Matches in SemOpenAlex for { <https://semopenalex.org/work/W2014774244> ?p ?o ?g. }
- W2014774244 endingPage "61" @default.
- W2014774244 startingPage "36" @default.
- W2014774244 abstract "Abstract Parameter estimation in dynamic models of ecosystems is essentially an optimization task. Due to the characteristics of ecosystems and typical models thereof, such as non-linearity, high dimensionality, and low quantity and quality of observed data, this optimization task can be very hard for traditional (derivative-based or local) optimization methods. This calls for the use of advanced meta-heuristic approaches, such as evolutionary or swarm-based methods. In this paper, we conduct an empirical comparison of four meta-heuristic optimization methods, and one local optimization method as a baseline, on a representative task of parameter estimation in a nonlinear dynamic model of an aquatic ecosystem. The five methods compared are the differential ant-stigmergy algorithm (DASA) and its continuous variant (CDASA), particle swarm optimization (PSO), differential evolution (DE) and algorithm 717 (A717). We use synthetic data, both without and with different levels of noise, as well as real measurements from Lake Bled. We also consider two different simulation approaches: teacher forcing, which makes supervised predictions one (small) time step ahead, and full (multistep) simulation, which makes predictions based on the history predictions for longer time periods. The meta-heuristic global optimization methods for parameter estimation are clearly superior and should be preferred over local optimization methods. While the differences in performance between the different methods within the class of meta-heuristics are not significant across all conditions, differential evolution yields the best results in terms of quality of the reconstructed system dynamics as well as speed of convergence. While the use of teacher forcing simulation makes parameter estimation much faster, the use of full simulation produces much better parameter estimates from real measured data." @default.
- W2014774244 created "2016-06-24" @default.
- W2014774244 creator A5006069311 @default.
- W2014774244 creator A5024843072 @default.
- W2014774244 creator A5064609702 @default.
- W2014774244 creator A5079563635 @default.
- W2014774244 date "2012-02-01" @default.
- W2014774244 modified "2023-09-26" @default.
- W2014774244 title "Parameter estimation in a nonlinear dynamic model of an aquatic ecosystem with meta-heuristic optimization" @default.
- W2014774244 cites W1595159159 @default.
- W2014774244 cites W1635118735 @default.
- W2014774244 cites W1974473926 @default.
- W2014774244 cites W1974506198 @default.
- W2014774244 cites W1975079547 @default.
- W2014774244 cites W1983099157 @default.
- W2014774244 cites W1986224264 @default.
- W2014774244 cites W1995637470 @default.
- W2014774244 cites W2013221378 @default.
- W2014774244 cites W2016069104 @default.
- W2014774244 cites W2016589492 @default.
- W2014774244 cites W2024060531 @default.
- W2014774244 cites W2037606162 @default.
- W2014774244 cites W2038698475 @default.
- W2014774244 cites W2044424534 @default.
- W2014774244 cites W2044889656 @default.
- W2014774244 cites W2051778299 @default.
- W2014774244 cites W2053593459 @default.
- W2014774244 cites W2072033391 @default.
- W2014774244 cites W2081217725 @default.
- W2014774244 cites W2088383307 @default.
- W2014774244 cites W2089713271 @default.
- W2014774244 cites W2091635497 @default.
- W2014774244 cites W2105504591 @default.
- W2014774244 cites W2123538678 @default.
- W2014774244 cites W2146020183 @default.
- W2014774244 cites W2149994241 @default.
- W2014774244 cites W2168005779 @default.
- W2014774244 cites W2170484057 @default.
- W2014774244 cites W4234406933 @default.
- W2014774244 cites W6522069 @default.
- W2014774244 cites W7303656 @default.
- W2014774244 doi "https://doi.org/10.1016/j.ecolmodel.2011.11.029" @default.
- W2014774244 hasPublicationYear "2012" @default.
- W2014774244 type Work @default.
- W2014774244 sameAs 2014774244 @default.
- W2014774244 citedByCount "27" @default.
- W2014774244 countsByYear W20147742442012 @default.
- W2014774244 countsByYear W20147742442013 @default.
- W2014774244 countsByYear W20147742442014 @default.
- W2014774244 countsByYear W20147742442015 @default.
- W2014774244 countsByYear W20147742442016 @default.
- W2014774244 countsByYear W20147742442017 @default.
- W2014774244 countsByYear W20147742442018 @default.
- W2014774244 countsByYear W20147742442019 @default.
- W2014774244 countsByYear W20147742442020 @default.
- W2014774244 countsByYear W20147742442021 @default.
- W2014774244 countsByYear W20147742442022 @default.
- W2014774244 crossrefType "journal-article" @default.
- W2014774244 hasAuthorship W2014774244A5006069311 @default.
- W2014774244 hasAuthorship W2014774244A5024843072 @default.
- W2014774244 hasAuthorship W2014774244A5064609702 @default.
- W2014774244 hasAuthorship W2014774244A5079563635 @default.
- W2014774244 hasConcept C105795698 @default.
- W2014774244 hasConcept C110872660 @default.
- W2014774244 hasConcept C121332964 @default.
- W2014774244 hasConcept C126255220 @default.
- W2014774244 hasConcept C158622935 @default.
- W2014774244 hasConcept C162324750 @default.
- W2014774244 hasConcept C167928553 @default.
- W2014774244 hasConcept C173801870 @default.
- W2014774244 hasConcept C175327387 @default.
- W2014774244 hasConcept C186060115 @default.
- W2014774244 hasConcept C187736073 @default.
- W2014774244 hasConcept C18903297 @default.
- W2014774244 hasConcept C2988037039 @default.
- W2014774244 hasConcept C33923547 @default.
- W2014774244 hasConcept C39432304 @default.
- W2014774244 hasConcept C41008148 @default.
- W2014774244 hasConcept C42088612 @default.
- W2014774244 hasConcept C62520636 @default.
- W2014774244 hasConcept C86803240 @default.
- W2014774244 hasConcept C96250715 @default.
- W2014774244 hasConceptScore W2014774244C105795698 @default.
- W2014774244 hasConceptScore W2014774244C110872660 @default.
- W2014774244 hasConceptScore W2014774244C121332964 @default.
- W2014774244 hasConceptScore W2014774244C126255220 @default.
- W2014774244 hasConceptScore W2014774244C158622935 @default.
- W2014774244 hasConceptScore W2014774244C162324750 @default.
- W2014774244 hasConceptScore W2014774244C167928553 @default.
- W2014774244 hasConceptScore W2014774244C173801870 @default.
- W2014774244 hasConceptScore W2014774244C175327387 @default.
- W2014774244 hasConceptScore W2014774244C186060115 @default.
- W2014774244 hasConceptScore W2014774244C187736073 @default.
- W2014774244 hasConceptScore W2014774244C18903297 @default.
- W2014774244 hasConceptScore W2014774244C2988037039 @default.
- W2014774244 hasConceptScore W2014774244C33923547 @default.
- W2014774244 hasConceptScore W2014774244C39432304 @default.
- W2014774244 hasConceptScore W2014774244C41008148 @default.