Matches in SemOpenAlex for { <https://semopenalex.org/work/W2014778105> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2014778105 endingPage "409" @default.
- W2014778105 startingPage "373" @default.
- W2014778105 abstract "Multi-label classification extends the standard multi-class classification paradigm by dropping the assumption that classes have to be mutually exclusive, i.e., the same data item might belong to more than one class. Multi-label classification has many important applications in e.g. signal processing, medicine, biology and information security, but the analysis and understanding of the inference methods based on data with multiple labels are still underdeveloped. In this paper, we formulate a general generative process for multi-label data, i.e. we associate each label (or class) with a source. To generate multi-label data items, the emissions of all sources in the label set are combined. In the training phase, only the probability distributions of these (single label) sources need to be learned. Inference on multi-label data requires solving an inverse problem, models of the data generation process therefore require additional assumptions to guarantee well-posedness of the inference procedure. Similarly, in the prediction (test) phase, the distributions of all single-label sources in the label set are combined using the combination function to determine the probability of a label set. We formally describe several previously presented inference methods and introduce a novel, general-purpose approach, where the combination function is determined based on the data and/or on a priori knowledge of the data generation mechanism. This framework includes cross-training and new source training (also named label power set method) as special cases. We derive an asymptotic theory for estimators based on multi-label data and investigate the consistency and efficiency of estimators obtained by several state-of-the-art inference techniques. Several experiments confirm these findings and emphasize the importance of a sufficiently complex generative model for real-world applications." @default.
- W2014778105 created "2016-06-24" @default.
- W2014778105 creator A5000020949 @default.
- W2014778105 creator A5038199211 @default.
- W2014778105 date "2014-07-09" @default.
- W2014778105 modified "2023-09-26" @default.
- W2014778105 title "Asymptotic analysis of estimators on multi-label data" @default.
- W2014778105 cites W1524416683 @default.
- W2014778105 cites W1558128972 @default.
- W2014778105 cites W1564947197 @default.
- W2014778105 cites W1676820704 @default.
- W2014778105 cites W1979974203 @default.
- W2014778105 cites W1998839399 @default.
- W2014778105 cites W2048064382 @default.
- W2014778105 cites W2053463056 @default.
- W2014778105 cites W2053565514 @default.
- W2014778105 cites W2056392803 @default.
- W2014778105 cites W2071778920 @default.
- W2014778105 cites W2079362249 @default.
- W2014778105 cites W2119466907 @default.
- W2014778105 cites W2127100469 @default.
- W2014778105 cites W2143854982 @default.
- W2014778105 cites W2146241755 @default.
- W2014778105 cites W2149684865 @default.
- W2014778105 cites W2150442700 @default.
- W2014778105 cites W2151989798 @default.
- W2014778105 cites W2156346614 @default.
- W2014778105 cites W2156935079 @default.
- W2014778105 cites W2161824996 @default.
- W2014778105 cites W4241078576 @default.
- W2014778105 cites W4242226219 @default.
- W2014778105 cites W4293052541 @default.
- W2014778105 cites W568201293 @default.
- W2014778105 cites W66588809 @default.
- W2014778105 doi "https://doi.org/10.1007/s10994-014-5457-9" @default.
- W2014778105 hasPublicationYear "2014" @default.
- W2014778105 type Work @default.
- W2014778105 sameAs 2014778105 @default.
- W2014778105 citedByCount "0" @default.
- W2014778105 crossrefType "journal-article" @default.
- W2014778105 hasAuthorship W2014778105A5000020949 @default.
- W2014778105 hasAuthorship W2014778105A5038199211 @default.
- W2014778105 hasBestOaLocation W20147781051 @default.
- W2014778105 hasConcept C105795698 @default.
- W2014778105 hasConcept C119857082 @default.
- W2014778105 hasConcept C124101348 @default.
- W2014778105 hasConcept C154945302 @default.
- W2014778105 hasConcept C177264268 @default.
- W2014778105 hasConcept C185429906 @default.
- W2014778105 hasConcept C199360897 @default.
- W2014778105 hasConcept C2776214188 @default.
- W2014778105 hasConcept C2776436953 @default.
- W2014778105 hasConcept C2777212361 @default.
- W2014778105 hasConcept C33923547 @default.
- W2014778105 hasConcept C41008148 @default.
- W2014778105 hasConceptScore W2014778105C105795698 @default.
- W2014778105 hasConceptScore W2014778105C119857082 @default.
- W2014778105 hasConceptScore W2014778105C124101348 @default.
- W2014778105 hasConceptScore W2014778105C154945302 @default.
- W2014778105 hasConceptScore W2014778105C177264268 @default.
- W2014778105 hasConceptScore W2014778105C185429906 @default.
- W2014778105 hasConceptScore W2014778105C199360897 @default.
- W2014778105 hasConceptScore W2014778105C2776214188 @default.
- W2014778105 hasConceptScore W2014778105C2776436953 @default.
- W2014778105 hasConceptScore W2014778105C2777212361 @default.
- W2014778105 hasConceptScore W2014778105C33923547 @default.
- W2014778105 hasConceptScore W2014778105C41008148 @default.
- W2014778105 hasIssue "3" @default.
- W2014778105 hasLocation W20147781051 @default.
- W2014778105 hasLocation W20147781052 @default.
- W2014778105 hasLocation W20147781053 @default.
- W2014778105 hasOpenAccess W2014778105 @default.
- W2014778105 hasPrimaryLocation W20147781051 @default.
- W2014778105 hasRelatedWork W2014358890 @default.
- W2014778105 hasRelatedWork W2356149660 @default.
- W2014778105 hasRelatedWork W2467005568 @default.
- W2014778105 hasRelatedWork W2476423741 @default.
- W2014778105 hasRelatedWork W2961085424 @default.
- W2014778105 hasRelatedWork W2963058055 @default.
- W2014778105 hasRelatedWork W3134544268 @default.
- W2014778105 hasRelatedWork W4225429084 @default.
- W2014778105 hasRelatedWork W4307964207 @default.
- W2014778105 hasRelatedWork W4308823300 @default.
- W2014778105 hasVolume "99" @default.
- W2014778105 isParatext "false" @default.
- W2014778105 isRetracted "false" @default.
- W2014778105 magId "2014778105" @default.
- W2014778105 workType "article" @default.