Matches in SemOpenAlex for { <https://semopenalex.org/work/W2014780902> ?p ?o ?g. }
- W2014780902 endingPage "257" @default.
- W2014780902 startingPage "239" @default.
- W2014780902 abstract "Post-Variscan hydrothermal base-metal mineralization of the Taunus ore district, SE Rhenish Massif (Germany), has been studied through combination of stable (S, C, O) and radiogenic (Pb) isotope geochemistry. Based on field and textural observations, five hydrothermal mineralization types can be distinguished. These are (1) tetrahedrite–tennantite bearing quartz–ankerite veins, (2) quartz veins with Pb–Zn–Cu ores, (3) giant quartz veins, (4) metasomatic dolomite in Devonian reef complexes, and (5) calcite–(quartz) mineralization in Devonian reefs. The δ18OV-SMOW quartz values of base-metal veins are in the range of 18.0–21.5‰, whereas those of giant quartz veins have lower values of 15.9–18.6‰. This difference reflects the higher fluid fluxes and smaller extent of rock-buffering for the giant quartz veins. Hydrothermal carbonates from the tetrahedrite and Pb–Zn–Cu veins have variable but distinctly negative δ13CV-PDB values. They can be explained by contributions from fluids that had picked up low δ13CV-PDB carbon via oxidation of organic matter and from fluids that interacted with Devonian reef carbonate having positive δ13CV-PDB. Metasomatic dolomite has positive δ13CV-PDB values that closely reflect those of the precursor limestone. By contrast, carbonates of calcite–(quartz) mineralization have negative δ13CV-PDB values which are negatively correlated with the δ18O values. This pattern is explained by fluid mixing processes where contributions from descending cooler fluids with rather low salinity were dominant. The isotope data suggest that tetrahedrite veins, Pb–Zn–Cu veins, and giant quartz veins formed from fluid mixing involving two end-members with contrasting chemical features. This is supported by fluid inclusion data (Adeyemi, 1982) that show repeated alternation between two different types of fluid inclusions, which are hotter intermediate- to high-salinity NaCl–CaCl2 fluids and cooler low-salinity NaCl-dominated fluids. The metal-rich saline fluids were likely generated at the boundary between the pre-Devonian basement and the overlying Devonian–Carboniferous nappe pile. Fault activation resulted in strong fluid focusing and upward migration of large volumes of hot Na–Ca brines, which mixed with cooler and more dilute fluids at shallower crustal levels. Variable contributions from both fluid types, local fluid fluxes, temperature variations, and variations in pH and oxidation state have then controlled the vein mineralogy and metal inventory." @default.
- W2014780902 created "2016-06-24" @default.
- W2014780902 creator A5010372144 @default.
- W2014780902 creator A5016833634 @default.
- W2014780902 creator A5062413478 @default.
- W2014780902 creator A5072528849 @default.
- W2014780902 date "2012-10-01" @default.
- W2014780902 modified "2023-09-30" @default.
- W2014780902 title "Post-Variscan hydrothermal vein mineralization, Taunus, Rhenish Massif (Germany): Constraints from stable and radiogenic isotope data" @default.
- W2014780902 cites W1966726609 @default.
- W2014780902 cites W1985480593 @default.
- W2014780902 cites W1990307369 @default.
- W2014780902 cites W1996080599 @default.
- W2014780902 cites W1996477705 @default.
- W2014780902 cites W1998327745 @default.
- W2014780902 cites W1999716692 @default.
- W2014780902 cites W2001746264 @default.
- W2014780902 cites W2004620632 @default.
- W2014780902 cites W2007105153 @default.
- W2014780902 cites W2009123317 @default.
- W2014780902 cites W2017934677 @default.
- W2014780902 cites W2027958304 @default.
- W2014780902 cites W2031561150 @default.
- W2014780902 cites W2031776660 @default.
- W2014780902 cites W2033268925 @default.
- W2014780902 cites W2038468054 @default.
- W2014780902 cites W2038779757 @default.
- W2014780902 cites W2039569586 @default.
- W2014780902 cites W2049960244 @default.
- W2014780902 cites W2060885215 @default.
- W2014780902 cites W2064124343 @default.
- W2014780902 cites W2066548489 @default.
- W2014780902 cites W2073815295 @default.
- W2014780902 cites W2077711540 @default.
- W2014780902 cites W2079650581 @default.
- W2014780902 cites W2081296107 @default.
- W2014780902 cites W2086951651 @default.
- W2014780902 cites W2091125213 @default.
- W2014780902 cites W2092800861 @default.
- W2014780902 cites W2093765579 @default.
- W2014780902 cites W2104532178 @default.
- W2014780902 cites W2106088419 @default.
- W2014780902 cites W2114276383 @default.
- W2014780902 cites W2142156816 @default.
- W2014780902 cites W2159744546 @default.
- W2014780902 cites W2168761377 @default.
- W2014780902 cites W2316239421 @default.
- W2014780902 cites W2337794151 @default.
- W2014780902 cites W2476779930 @default.
- W2014780902 cites W3015216463 @default.
- W2014780902 doi "https://doi.org/10.1016/j.oregeorev.2012.03.010" @default.
- W2014780902 hasPublicationYear "2012" @default.
- W2014780902 type Work @default.
- W2014780902 sameAs 2014780902 @default.
- W2014780902 citedByCount "12" @default.
- W2014780902 countsByYear W20147809022015 @default.
- W2014780902 countsByYear W20147809022016 @default.
- W2014780902 countsByYear W20147809022018 @default.
- W2014780902 countsByYear W20147809022019 @default.
- W2014780902 countsByYear W20147809022020 @default.
- W2014780902 countsByYear W20147809022021 @default.
- W2014780902 countsByYear W20147809022023 @default.
- W2014780902 crossrefType "journal-article" @default.
- W2014780902 hasAuthorship W2014780902A5010372144 @default.
- W2014780902 hasAuthorship W2014780902A5016833634 @default.
- W2014780902 hasAuthorship W2014780902A5062413478 @default.
- W2014780902 hasAuthorship W2014780902A5072528849 @default.
- W2014780902 hasConcept C111696902 @default.
- W2014780902 hasConcept C118552586 @default.
- W2014780902 hasConcept C121332964 @default.
- W2014780902 hasConcept C127313418 @default.
- W2014780902 hasConcept C151730666 @default.
- W2014780902 hasConcept C156622251 @default.
- W2014780902 hasConcept C15744967 @default.
- W2014780902 hasConcept C159390177 @default.
- W2014780902 hasConcept C159750122 @default.
- W2014780902 hasConcept C160776313 @default.
- W2014780902 hasConcept C164304813 @default.
- W2014780902 hasConcept C17409809 @default.
- W2014780902 hasConcept C22117777 @default.
- W2014780902 hasConcept C2777202286 @default.
- W2014780902 hasConcept C57016615 @default.
- W2014780902 hasConcept C62520636 @default.
- W2014780902 hasConcept C67236022 @default.
- W2014780902 hasConceptScore W2014780902C111696902 @default.
- W2014780902 hasConceptScore W2014780902C118552586 @default.
- W2014780902 hasConceptScore W2014780902C121332964 @default.
- W2014780902 hasConceptScore W2014780902C127313418 @default.
- W2014780902 hasConceptScore W2014780902C151730666 @default.
- W2014780902 hasConceptScore W2014780902C156622251 @default.
- W2014780902 hasConceptScore W2014780902C15744967 @default.
- W2014780902 hasConceptScore W2014780902C159390177 @default.
- W2014780902 hasConceptScore W2014780902C159750122 @default.
- W2014780902 hasConceptScore W2014780902C160776313 @default.
- W2014780902 hasConceptScore W2014780902C164304813 @default.
- W2014780902 hasConceptScore W2014780902C17409809 @default.
- W2014780902 hasConceptScore W2014780902C22117777 @default.
- W2014780902 hasConceptScore W2014780902C2777202286 @default.