Matches in SemOpenAlex for { <https://semopenalex.org/work/W2014788501> ?p ?o ?g. }
- W2014788501 endingPage "43754" @default.
- W2014788501 startingPage "43744" @default.
- W2014788501 abstract "Brain-specific chondroitin sulfate (CS) proteoglycan (PG) DSD-1-PG/6B4-PG/phosphacan isolated from neonatal mouse brains exhibits neurite outgrowth-promoting activity toward embryonic rat and mouse hippocampal neurons in vitro through the so-called DSD-1 epitope embedded in its glycosaminoglycan side chains. Oversulfated CS variants, CS-D from shark cartilage and CS-E from squid cartilage, also possess similar activities. We have proposed that the neuritogenic property of the DSD-1 epitope may be attributable to a distinct CS structure characterized by the disulfated D disaccharide unit [GlcUA(2S)-GalNAc(6S)]. In this study, we assessed neuritogenic potencies of various oversulfated dermatan sulfate (DS) preparations purified from hagfish notochord, the bodies of two kinds of ascidians and embryonic sea urchin, which are characterized by the predominant disulfated disaccharide units of [IdoUA-GalNAc(4S,6S)] (68%), [IdoUA(2S)-GalNAc(4S)] (66%) plus [IdoUA(2S)-GalNAc(6S)] (5%), [IdoUA(2S)-GalNAc (6S)] (>90%), and [IdoUA-GalNAc(4S,6S)] (74%), respectively. They exerted marked neurite outgrowth-promoting activities, resulting in distinct morphological features depending on the individual structural features. Such activities were not observed for a less sulfated DS preparation derived from porcine skin, which has a monosulfated disaccharide unit [IdoUA-Gal-NAc(4S)] as a predominant unit. The neurite outgrowth-promoting activities of these oversulfated DS preparations and DSD-1-PG were eliminated by the specific enzymatic cleavage of GalNAc-IdoUA linkages characteristic of DS using chondroitinase B. In addition, chemical analysis of the glycosaminoglycan side chains of DSD-1-PG revealed the DS-type structures. These observations suggest potential novel neurobiological functions of oversulfated DS structures and may reflect the physiological neuritogenesis during brain development by mammalian oversulfated DS structures exemplified by the DSD-1 epitope. Brain-specific chondroitin sulfate (CS) proteoglycan (PG) DSD-1-PG/6B4-PG/phosphacan isolated from neonatal mouse brains exhibits neurite outgrowth-promoting activity toward embryonic rat and mouse hippocampal neurons in vitro through the so-called DSD-1 epitope embedded in its glycosaminoglycan side chains. Oversulfated CS variants, CS-D from shark cartilage and CS-E from squid cartilage, also possess similar activities. We have proposed that the neuritogenic property of the DSD-1 epitope may be attributable to a distinct CS structure characterized by the disulfated D disaccharide unit [GlcUA(2S)-GalNAc(6S)]. In this study, we assessed neuritogenic potencies of various oversulfated dermatan sulfate (DS) preparations purified from hagfish notochord, the bodies of two kinds of ascidians and embryonic sea urchin, which are characterized by the predominant disulfated disaccharide units of [IdoUA-GalNAc(4S,6S)] (68%), [IdoUA(2S)-GalNAc(4S)] (66%) plus [IdoUA(2S)-GalNAc(6S)] (5%), [IdoUA(2S)-GalNAc (6S)] (>90%), and [IdoUA-GalNAc(4S,6S)] (74%), respectively. They exerted marked neurite outgrowth-promoting activities, resulting in distinct morphological features depending on the individual structural features. Such activities were not observed for a less sulfated DS preparation derived from porcine skin, which has a monosulfated disaccharide unit [IdoUA-Gal-NAc(4S)] as a predominant unit. The neurite outgrowth-promoting activities of these oversulfated DS preparations and DSD-1-PG were eliminated by the specific enzymatic cleavage of GalNAc-IdoUA linkages characteristic of DS using chondroitinase B. In addition, chemical analysis of the glycosaminoglycan side chains of DSD-1-PG revealed the DS-type structures. These observations suggest potential novel neurobiological functions of oversulfated DS structures and may reflect the physiological neuritogenesis during brain development by mammalian oversulfated DS structures exemplified by the DSD-1 epitope. Chondroitin sulfate/dermatan sulfate proteoglycans (CS/DS-PGs) 1The abbreviations used are: CS, chondroitin sulfate; DS, dermatan sulfate; PG, proteoglycan; GAG, glycosaminoglycan; ECM, extracellular matrix; GlcUA, glucuronic acid; GalNAc, N-acetylgalactosamine; Ido-UA, iduronic acid; mAb, monoclonal antibody; Hep, heparin; MK, midkine; P-ORN, poly-dl-ornithine; PBS, phosphate-buffered saline; 2AB, 2-aminobenzamide; HPLC, high-performance liquid chromatography; ΔHexUA, 4,5-unsaturated hexuronic acid or 4-deoxy-α-l-threo-hex-4-enepyranosyluronic acid; ΔDi-0S, Δ4,5HexUAα1–3GalNAc; ΔDi-4S, Δ4,5HexUAα1–3GalNAc(4-O-sulfate); ΔDi-6S, Δ4,5HexUAα1–3Gal-NAc(6-O-sulfate); ΔDi-diSD, Δ4,5HexUA(2-O-sulfate)α1–3GalNAc(6-O-sulfate); ΔDi-diSE, Δ4,5HexUAα1–3GalNAc(4,6-O-disulfate); PTN, pleiotrophin; PTPζ, receptor-type protein tyrosine phosphatase ζ; En, embryonic day n; S/Unit, average number of sulfate groups/disaccharide unit. are composed of sulfated glycosaminoglycan (GAG) chain(s) covalently linked to a variety of core proteins and are widely expressed in the extracellular matrices (ECM) of connective tissues, at cell surfaces of many cell types, and in intracellular storage granules (for review see Refs. 1Rodén L. Lennarz W.J. The Biochemistry of Glycoproteins and Proteoglycans. Plenum Publishing Corp., New York1980: 491-517Google Scholar and 2Poole A.R. Biochem. J. 1986; 236: 1-14Crossref PubMed Scopus (378) Google Scholar). In the mammalian central nervous system, CS-PGs are also expressed as abundant ECM molecules, and their spatiotemporal distributions have been well characterized (3Lander A.D. Curr. Opin. Neurobiol. 1993; 3: 716-723Crossref PubMed Scopus (120) Google Scholar, 4Oohira A. Matsui F. Tokita Y. Yamauchi S. Aono S. Arch. Biochem. Biophys. 2000; 374: 24-34Crossref PubMed Scopus (151) Google Scholar, 5Bandtlow C.E. Zimmermann D.R. Physiol. Rev. 2000; 80: 1267-1290Crossref PubMed Scopus (546) Google Scholar, 6Fernaud-Espinosa I. Nieto-Sampedro M. Bovolenta P. J. Neurobiol. 1996; 30: 410-424Crossref PubMed Scopus (42) Google Scholar). Although the biological significance of CS/DS constituents of CS-PGs has attracted little attention until recently, growing evidence suggests that some CS subtypes play crucial roles in various biological events, especially neural network formation (7Sugahara K. Kitagawa H. Curr. Opin. Struct. Biol. 2000; 10: 518-527Crossref PubMed Scopus (356) Google Scholar, 8Sugahara K. Yamada S. Trends Glycosci. Glycotechnol. 2000; 12: 321-349Crossref Scopus (96) Google Scholar). CS is a linear polysaccharide chain comprised of repeating disaccharide units containing glucuronic acid (GlcUA) and N-acetylgalactosamine (GalNAc) residues, whereas DS is a stereoisomeric form of CS with varying proportions of iduronic acid (IdoUA) in place of GlcUA. These polysaccharides are found in divergent organisms from worms to human. CS chains can be divided into several subclasses. Major CS chains found in mammalian tissues contain the monosulfated A disaccharide unit [GlcUA-GalNAc(4S)] and C unit [GlcUA-GalNAc(6S)]. On the other hand, significant and various proportions of the disulfated disaccharide units such as D unit [GlcUA(2S)-GalNAc(6S)] and E unit [GlcUA-GalNAc(4S,6S)], which are characteristic components in shark cartilage CS-D and squid cartilage CS-E, respectively, are detected in the brains of cattle (9Saigo K. Egami F. J. Neurochem. 1970; 17: 633-647Crossref PubMed Scopus (37) Google Scholar), embryonic day 13 (E13) mice (10Zou P. Zou K. Muramatsu H. Ichihara-Tanaka K. Habuchi O. Ohtake S. Ikematsu S. Sakuma S. Muramatsu T. Glycobiology. 2003; 13: 35-42Crossref PubMed Scopus (75) Google Scholar), and E18 rats (11Ueoka C. Kaneda N. Okazaki I. Nadanaka S. Muramatsu T. Sugahara K. J. Biol. Chem. 2000; 275: 37407-37413Abstract Full Text Full Text PDF PubMed Scopus (132) Google Scholar) (2S, 4S, and 6S represent 2-O-, 4-O-, and 6-O-sulfate group, respectively). In addition, we have demonstrated that particular neurotrophic CS-PGs such as DSD-1-PG/6B4-PG/phosphacan purified from neonatal mouse brains (12Faissner A. Clement A. Lochter A. Streit A. Mandl C. Schachner M. J. Cell Biol. 1994; 126: 783-799Crossref PubMed Scopus (345) Google Scholar, 13Maeda N. Matsui F. Oohira A. Dev. Biol. 1992; 151: 564-574Crossref PubMed Scopus (96) Google Scholar) and appican (14Salinero O. Moreno-Flores M.T. Wandosell F. J. Neurosci. Res. 2000; 60: 87-97Crossref PubMed Scopus (36) Google Scholar), the PG form of amyloid precursor protein expressed by rat C6 glioma cells, contained significant proportions of D and E units, respectively (15Clement A.M. Nadanaka S. Masayama K. Mandl C. Sugahara K. Faissner A. J. Biol. Chem. 1998; 273: 28444-28453Abstract Full Text Full Text PDF PubMed Scopus (184) Google Scholar, 16Maeda N. He J. Yajima Y. Mikami T. Sugahara K. Yabe T. J. Biol. Chem. 2003; 278: 35805-35811Abstract Full Text Full Text PDF PubMed Scopus (99) Google Scholar, 17Tsuchida K. Shioi J. Yamada S. Boghosian G. Wu A. Cai H. Sugahara K. Robakis N.K. J. Biol. Chem. 2001; 276: 37155-37160Abstract Full Text Full Text PDF PubMed Scopus (50) Google Scholar). The proportions of these units developmentally change in the chick and mouse brain (16Maeda N. He J. Yajima Y. Mikami T. Sugahara K. Yabe T. J. Biol. Chem. 2003; 278: 35805-35811Abstract Full Text Full Text PDF PubMed Scopus (99) Google Scholar, 18Kitagawa H. Tsutsumi K. Tone Y. Sugahara K. J. Biol. Chem. 1997; 272: 31377-31381Abstract Full Text Full Text PDF PubMed Scopus (165) Google Scholar), suggesting that CS chains differing in the degree and profile of the sulfation may possess distinct functions in development. In contrast to CS chains, the presence and the possible functions of DS-type GAG chains containing IdoUA in the mammalian brain are poorly understood. CS-PGs and CS GAGs have been reported to inhibit neurite outgrowth in vitro (5Bandtlow C.E. Zimmermann D.R. Physiol. Rev. 2000; 80: 1267-1290Crossref PubMed Scopus (546) Google Scholar, 19McKeon R.J. Schreiber R.C. Rudge J.S. Silver J. J. Neurosci. 1991; 11: 3398-3411Crossref PubMed Google Scholar, 20Smith-Thomas L.C. Stevens J. Fok-Seang J. Faissner A. Rogers J.H. Fawcett J.W. J. Cell Sci. 1995; 108: 1307-1315Crossref PubMed Google Scholar, 21Faissner A. Steindler D. Glia. 1995; 13: 233-254Crossref PubMed Scopus (156) Google Scholar, 22Davies S.J. Fitch M.T. Memberg S.P. Hall A.K. Raisman G. Silver J. Nature. 1997; 390: 680-683Crossref PubMed Scopus (676) Google Scholar, 23Niederost B.P. Zimmermann D.R. Schwab M.E. Bandtlow C.E. J. Neurosci. 1999; 19: 8979-8989Crossref PubMed Google Scholar). This widely accepted concept is consistent with the recent findings that enzymatic degradation of CS chains permitted the axonal regeneration after a spinal cord injury (24Bradbury E.J. Moon L.D. Popat R.J. King V.R. Bennett G.S. Patel P.N. Fawcett J.W. McMahon S.B. Nature. 2002; 416: 636-640Crossref PubMed Scopus (1918) Google Scholar) and the reactivation of the ocular dominance plasticity in the adult visual cortex (25Pizzorusso T. Medini P. Berardi N. Chierzi S. Fawcett J.W. Maffei L. Science. 2002; 298: 1248-1251Crossref PubMed Scopus (1269) Google Scholar). In strong contrast, DSD-1-PG stimulates neurite outgrowth of cultured rat hippocampal neurons through its CS side chains containing the unique structure (referred to as DSD-1 epitope), recognized by the monoclonal antibody (mAb) 473HD (12Faissner A. Clement A. Lochter A. Streit A. Mandl C. Schachner M. J. Cell Biol. 1994; 126: 783-799Crossref PubMed Scopus (345) Google Scholar). The 473HD-reactive epitope is also found in CS-C and oversulfated CS-D from shark cartilage, and the CS-D preparation itself exhibits neurite outgrowth-promoting activity (15Clement A.M. Nadanaka S. Masayama K. Mandl C. Sugahara K. Faissner A. J. Biol. Chem. 1998; 273: 28444-28453Abstract Full Text Full Text PDF PubMed Scopus (184) Google Scholar, 26Nadanaka S. Clement A.M. Masayama K. Faissner A. Sugahara K. J. Biol. Chem. 1998; 273: 3296-3307Abstract Full Text Full Text PDF PubMed Scopus (153) Google Scholar). Interestingly, another oversulfated CS variant, CS-E derived from squid cartilage, also enhances neurite extension but in a DSD-1 epitope-independent manner as revealed by the mAb 473HD-resistant property (27Clement A.M. Sugahara K. Faissner A. Neurosci. Lett. 1999; 269: 125-128Crossref PubMed Scopus (120) Google Scholar). Because CS-E interacts specifically with several heparin (Hep)-binding growth factors known as neurotrophic factors (28Deepa S.S. Umehara Y. Higashiyama S. Itoh N. Sugahara K. J. Biol. Chem. 2002; 277: 43707-43716Abstract Full Text Full Text PDF PubMed Scopus (294) Google Scholar), a possibility exists that the neurite outgrowth-promoting activities of such oversulfated CS variants may be elicited through their binding of Hep-binding growth factors. Oversulfated GAG chains, besides CS-D and CS-E, have been found abundantly in marine vertebrates and invertebrates. The oversulfated GAG termed CS-H, isolated from the hagfish notochord, has a unique oversulfated structure characterized by a major disaccharide H unit [IdoUA-GalNAc(4S,6S)] (29Anno K. Seno N. Mathews M.B. Yamagata T. Suzuki S. Biochim. Biophys. Acta. 1971; 237: 173-177Crossref PubMed Scopus (60) Google Scholar, 30Ueoka C. Nadanaka S. Seno N. Khoo K.H. Sugahara K. Glycoconj. J. 1999; 16: 291-305Crossref PubMed Scopus (39) Google Scholar), and therefore is actually DS. The terminologies DS-E for this GAG and iE unit (where “i” stands for IdoUA) for the H disaccharide unit have been proposed (8Sugahara K. Yamada S. Trends Glycosci. Glycotechnol. 2000; 12: 321-349Crossref Scopus (96) Google Scholar). The bodies of ascidians (Chordate-Tunicate) from various species are rich sources of oversulfated DS chains with different sulfation profiles. For example, the DS preparations from Ascidia nigra and Styela plicata have high contents of distinctive disaccharide units, [IdoUA(2S)-GalNAc(6S)] (iD unit) (66%) or [IdoUA(2S)-GalNAc(4S)] (B unit) (90%), respectively (31Pavão M.S. Mourão P.A. Mulloy B. Tollefsen D.M. J. Biol. Chem. 1995; 270: 31027-31036Abstract Full Text Full Text PDF PubMed Scopus (120) Google Scholar, 32Pavão M.S. Aiello K.R. Werneck C.C. Silva L.C. Valente A.P. Mulloy B. Colwell N.S. Tollefsen D.M. Mourão P.A. J. Biol. Chem. 1998; 273: 27848-27857Abstract Full Text Full Text PDF PubMed Scopus (166) Google Scholar) (see Table I). Recent studies have demonstrated that embryonic sea urchin Strongylocentrotus purpuratus produces oversulfated DS chains composed primarily of the iE disaccharide unit [IdoUA-GalNAc(4S,6S)] (74%), and the degree of the 4-O-sulfation is decreased markedly in the adult sea urchin (33Vilela-Silva A.C. Werneck C.C. Valente A.P. Vacquier V.D. Mourão P.A. Glycobiology. 2001; 11: 433-440Crossref PubMed Scopus (30) Google Scholar) (see Table I). Although some of these DS preparations exert anticoagulant activity (31Pavão M.S. Mourão P.A. Mulloy B. Tollefsen D.M. J. Biol. Chem. 1995; 270: 31027-31036Abstract Full Text Full Text PDF PubMed Scopus (120) Google Scholar, 32Pavão M.S. Aiello K.R. Werneck C.C. Silva L.C. Valente A.P. Mulloy B. Colwell N.S. Tollefsen D.M. Mourão P.A. J. Biol. Chem. 1998; 273: 27848-27857Abstract Full Text Full Text PDF PubMed Scopus (166) Google Scholar, 34Scully M.F. Ellis V. Seno N. Kakkar V.V. Biochem. J. 1988; 254: 547-551Crossref PubMed Scopus (36) Google Scholar), we have shown that DS-E/CS-H derived from hagfish notochord interacts significantly with a Hep-binding neuroregulatory factor midkine (MK) in vitro and inhibits MK-mediated neural adhesion similarly to CS-E (11Ueoka C. Kaneda N. Okazaki I. Nadanaka S. Muramatsu T. Sugahara K. J. Biol. Chem. 2000; 275: 37407-37413Abstract Full Text Full Text PDF PubMed Scopus (132) Google Scholar). Thus, various above-mentioned oversulfated DS preparations may exert neurite outgrowth-promoting activity as in the case of oversulfated CS variants. Here, we assessed neurite outgrowth-promoting activities of these DS variants toward cultured E16 mouse hippocampal neurons and investigated the involvement of IdoUA-containing DS-type structures in the neuritogenic properties. The preliminary findings were reported in abstract form (35Hikino M. Mikami T. Faissner A. Vilela-Silva A.C. Pavão M.S. Sugahara K. Seikagaku. 2002; 74: 734Google Scholar).Table IDisaccharide composition of CS/DS preparations used in the present studyGAGsBiological originsDisaccharide compositionaThe values are expressed as molar ratios of the total disaccharides produced by digestion with chondrotinase ABC in the referenced original studies (mol %). All of the DS preparations listed in the upper half may contain small proportions of GlcUA[IdoUA-GalNAc(4S)][IdoUA-GalNAc(6S)][IdoUA(2S)-GalNAc(4S)][IdoUA(2S)-GalNAc(6S)][IdoUA-GalNAc(4S,6S)]S/UnitRef.DSHagfish notochord2012NDbND, not detectedND681.6829Anno K. Seno N. Mathews M.B. Yamagata T. Suzuki S. Biochim. Biophys. Acta. 1971; 237: 173-177Crossref PubMed Scopus (60) Google ScholarDSAscidian S. plicata281665<11.7132Pavão M.S. Aiello K.R. Werneck C.C. Silva L.C. Valente A.P. Mulloy B. Colwell N.S. Tollefsen D.M. Mourão P.A. J. Biol. Chem. 1998; 273: 27848-27857Abstract Full Text Full Text PDF PubMed Scopus (166) Google ScholarDSAscidian A. nigraND<10ND>90ND1.9031Pavão M.S. Mourão P.A. Mulloy B. Tollefsen D.M. J. Biol. Chem. 1995; 270: 31027-31036Abstract Full Text Full Text PDF PubMed Scopus (120) Google ScholarDSEmbryonic sea urchin719<1<1741.7433Vilela-Silva A.C. Werneck C.C. Valente A.P. Vacquier V.D. Mourão P.A. Glycobiology. 2001; 11: 433-440Crossref PubMed Scopus (30) Google ScholarDSAdult sea urchin<15916<1251.4133Vilela-Silva A.C. Werneck C.C. Valente A.P. Vacquier V.D. Mourão P.A. Glycobiology. 2001; 11: 433-440Crossref PubMed Scopus (30) Google ScholarDSPorcine skin8956NDND1.06—cA. Ikegami, and K. Sugahara, unpublished dataGAGsBiological originsDisaccharide compositionaThe values are expressed as molar ratios of the total disaccharides produced by digestion with chondrotinase ABC in the referenced original studies (mol %). All of the DS preparations listed in the upper half may contain small proportions of GlcUA[GlcUA-GalNAc][GlcUA-GalNAc(4S)][GlcUA-GalNAc(6S)][GlcUA(2S)-GalNAc(6S)][GlcUA-GalNAc(4S,6S)]S/UnitRef.CS-DShark cartilageND36432011.21—dC. D. Nandini, and K. Sugahara, unpublished dataCS-ESquid cartilage8198ND561.53eNote that CS-E contains unusual disulfated and trisulfated disaccharide units containing GlcUA(3S), which are decomposed by chondroitinase ABC treatment and account for up to 10% of the total uronic acid depending on preparations (Refs. 41 and 42). Hence, the disaccharide composition here was calculated by multiplying the total disaccharides (mol %) detected by digestion with chondrotinase ABC by a factor of 0.9, and the S/Unit value may be slightly underestimated41Kinoshita A. Yamada S. Haslam S.M. Morris H.R. Dell A. Sugahara K. J. Biol. Chem. 1997; 272: 19656-19665Abstract Full Text Full Text PDF PubMed Scopus (103) Google ScholarCSfNote that the CS chains attached to the purified DSD-1-PG preparation derived from postnatal mouse brain contains an unidentified compound at 2.0 mol %, which elutes at the same position unsaturated disaccharide unit [ΔHexUA-GalNAc(4S,6S)] and are resistant to chondro-6-sulfatase (15). It also contains a small proportion of IdoUA as evident from the digestibility to chondroitinase B (see “Results”)Mouse brain (DSD-1-PG)268235ND1.0315Clement A.M. Nadanaka S. Masayama K. Mandl C. Sugahara K. Faissner A. J. Biol. Chem. 1998; 273: 28444-28453Abstract Full Text Full Text PDF PubMed Scopus (184) Google Scholara The values are expressed as molar ratios of the total disaccharides produced by digestion with chondrotinase ABC in the referenced original studies (mol %). All of the DS preparations listed in the upper half may contain small proportions of GlcUAb ND, not detectedc A. Ikegami, and K. Sugahara, unpublished datad C. D. Nandini, and K. Sugahara, unpublished datae Note that CS-E contains unusual disulfated and trisulfated disaccharide units containing GlcUA(3S), which are decomposed by chondroitinase ABC treatment and account for up to 10% of the total uronic acid depending on preparations (Refs. 41Kinoshita A. Yamada S. Haslam S.M. Morris H.R. Dell A. Sugahara K. J. Biol. Chem. 1997; 272: 19656-19665Abstract Full Text Full Text PDF PubMed Scopus (103) Google Scholar and 42Sugahara K. Tanaka Y. Yamada S. Seno N. Kitagawa H. Haslam S.M Morris H.R. Dell A. J. Biol. Chem. 1996; 271: 26745-26754Abstract Full Text Full Text PDF PubMed Scopus (97) Google Scholar). Hence, the disaccharide composition here was calculated by multiplying the total disaccharides (mol %) detected by digestion with chondrotinase ABC by a factor of 0.9, and the S/Unit value may be slightly underestimatedf Note that the CS chains attached to the purified DSD-1-PG preparation derived from postnatal mouse brain contains an unidentified compound at 2.0 mol %, which elutes at the same position unsaturated disaccharide unit [ΔHexUA-GalNAc(4S,6S)] and are resistant to chondro-6-sulfatase (15Clement A.M. Nadanaka S. Masayama K. Mandl C. Sugahara K. Faissner A. J. Biol. Chem. 1998; 273: 28444-28453Abstract Full Text Full Text PDF PubMed Scopus (184) Google Scholar). It also contains a small proportion of IdoUA as evident from the digestibility to chondroitinase B (see “Results”) Open table in a new tab Materials—The following sugars and enzymes were purchased from Seikagaku Corp. (Tokyo, Japan): shark cartilage CS-D, squid cartilage CS-E, porcine skin CS-B (dermatan sulfate, DS), conventional and highly purified (protease-free) preparations of chondroitinase ABC (EC 4.2.2.4) from Proteus vulgaris, chondroitinase AC-I (EC 4.2.2.5) from Flavobacterium heparinum, chondroitinase AC-II (EC 4.2.2.5) from Arthrobacter aurescens, and chondroitinase B (EC 4.2.2) from F. heparinum. Porcine intestinal Hep was from Nacalai Tesque (Kyoto, Japan). Laminin isolated from Engelbreth-Holm-Swarm mouse sarcoma cells was purchased from Invitrogen (Tokyo, Japan). CS-H (3.0 m NaCl-eluted fraction) isolated from notochord from hagfish (Eptatretus burgeri) (29Anno K. Seno N. Mathews M.B. Yamagata T. Suzuki S. Biochim. Biophys. Acta. 1971; 237: 173-177Crossref PubMed Scopus (60) Google Scholar) was from the late Prof. Nobuko Seno (Ochanomizu University, Tokyo, Japan). Oversulfated DS preparations from ascidians A. nigra and S. plicata were isolated as reported previously (31Pavão M.S. Mourão P.A. Mulloy B. Tollefsen D.M. J. Biol. Chem. 1995; 270: 31027-31036Abstract Full Text Full Text PDF PubMed Scopus (120) Google Scholar, 32Pavão M.S. Aiello K.R. Werneck C.C. Silva L.C. Valente A.P. Mulloy B. Colwell N.S. Tollefsen D.M. Mourão P.A. J. Biol. Chem. 1998; 273: 27848-27857Abstract Full Text Full Text PDF PubMed Scopus (166) Google Scholar). DS preparations from sea urchin S. purpuratus were isolated from the embryos and adult body walls as described previously (33Vilela-Silva A.C. Werneck C.C. Valente A.P. Vacquier V.D. Mourão P.A. Glycobiology. 2001; 11: 433-440Crossref PubMed Scopus (30) Google Scholar). The purified DSD-1-PG was prepared from postnatal day 1 and postnatal day 15 mouse brains as described previously (12Faissner A. Clement A. Lochter A. Streit A. Mandl C. Schachner M. J. Cell Biol. 1994; 126: 783-799Crossref PubMed Scopus (345) Google Scholar). Enzymatic Treatment—Enzymatic digestion with chondroitinases ABC, AC-I, AC-II, or B was carried out using 5 μg of each CS/DS polymer or 5 μg (as GAG polysaccharide) of DSD-1-PG and 7 mIU of each chondroitinase in a total volume of 50 μl of the appropriate buffer at 37 °C (or 30 °C for digestion with chondroitinase B) for 60 min as described previously (36Sugahara K. Ohkita Y. Shibata Y. Yoshida K. Ikegami A. J. Biol. Chem. 1995; 270: 7204-7212Abstract Full Text Full Text PDF PubMed Scopus (67) Google Scholar). A highly purified preparation of chondroitinase ABC was used only for a digestion of DSD-1-PG in place of the conventional preparation. After incubation, the reaction mixture was boiled at 100 °C for 1 min. The two-fifths volume (corresponding to 2 μg of GAG) of each mixture was used for a cell culture substrate described below. Preparation of Substrates—Plastic coverslips (10 × 10 mm) were precoated with 1.5 μg/ml poly-dl-ornithine (P-ORN) (molecular weight > 30,000; catalog number P-0671; Sigma) in 0.1 m borate buffer, pH 8.1, for 2 h at room temperature and then coated with various CS/DS polysaccharides (2 μg/coverslip) or their enzymatic digests diluted with phosphate-buffered saline (PBS) at 4 °C overnight unless indicated elsewhere (see “Results”). Laminin (2–10 μg/coverslip), DSD-1-PG (2 μg/coverslip as GAG polysaccharide), and its preparations pretreated with chondroitinases in PBS were also coated on the P-ORN-precoated substratum. Cell Culture—Primary cultures of hippocampal neurons were established from E16 mouse brains as described previously (15Clement A.M. Nadanaka S. Masayama K. Mandl C. Sugahara K. Faissner A. J. Biol. Chem. 1998; 273: 28444-28453Abstract Full Text Full Text PDF PubMed Scopus (184) Google Scholar) with slight modifications. The hippocampi were dissected from E16 mouse embryos, and the hippocampal blocks were washed 10 times with Hanks' balanced salt solution and dissociated with 0.25% (w/v) trypsin in the same Hanks' solution for 10 min at 37 °C followed by a series of gentle triturations. The single cells were resuspended with the culture medium, Eagle's minimum essential medium containing N2 supplements (Invitrogen, Tokyo, Japan), 0.1 mm pyruvate, 0.1% (w/v) ovalbumin, 0.029% l-glutamine, 0.2% sodium hydrogen carbonate, and 5 mm HEPES and plated at a cell density of 10,000 cells/cm2 on coverslips precoated with a defined substrate. Such cultures were maintained at 37 °C with 5% CO2 in a tissue culture incubator. After 24 h in culture, the cells were fixed in 4% (w/v) paraformaldehyde for 30 min, washed three times with PBS, and permeabilized with 0.2% (w/v) Triton X-100 in PBS for 30 min at room temperature. The cells were immunostained with anti-microtuble-associated protein 2 after 100-fold dilution (Leico Technologies Inc., St. Louis, MO) (37Caceres A. Banker G.A. Binder L. J. Neurosci. 1986; 6: 714-722Crossref PubMed Google Scholar) and anti-neurofilament after 250-fold dilution (Sigma) (38Debus E. Weber K. Osborn M. Differentiation. 1983; 25: 193-203Crossref PubMed Scopus (460) Google Scholar), which specifically reacts with phosphorylated and nonphosphorylated forms of neurofilament H subunit, antibodies in PBS containing 3% (w/v) bovine serum albumin followed by development using Vectastain ABC kit (Vector Laboratories Inc., Burlingame, CA) with 3,3′-diaminobenzidine as a chromogen. At least three independent experiments were carried out for each culture condition. Analysis of Neuronal Morphology—The immunostained cells on each coverslip were scanned and digitalized with a ×20 objective on an optical microscope (BH-2; Olympus, Tokyo, Japan) equipped with a digital camera (HC-300Z/OL; Olympus). The photographs were analyzed using morphological analysis software (Mac SCOPE; Mitani Corp., Tokyo, Japan). In morphometric analysis, only the clearly isolated neurons with at least one process being longer than a cell body diameter were chosen at random. The length of the longest neurite and the number of the primary neurites were determined by drawing and counting the corresponding neurite(s), respectively, of at least 100 neurons on duplicate coverslips of each substrate condition per experiment. The surface area of neuronal soma (μm2) was also measured as the criterion of cell adhesion. Analysis of the 2AB Derivatives of Chondroitinase Digests Prepared from the CS Chains of DSD-1-PG—DSD-1-PG (2 μg as GlcUA) was incubated with 6 mIU of chondroitinase B (a native or heat-inactivated preparation) in a total volume of 60 μl at 30 °C for 60 min as described above. The samples were dried in a vacuum concentrator and derivatized with 2AB, and the excess 2AB reagent was removed by paper chromatography (39Kinoshita A. Sugahara K. Anal. Biochem. 1999; 269: 367-378Crossref PubMed Scopus (191) Google Scholar). The three-fifths volume of the 2AB derivative was subsequently digested with 5 mIU of chondroitinase AC-I in a total volume of 20 μl at 37 °C for 60 min. Each 2AB derivative corresponding to a one-eighth volume of the starting material was analyzed using anion exchange HPLC on an amine-bound silica PA-03 column (4.6 × 250 mm; YMC Co., Kyoto, Japan) with a linear gradient of NaH2PO4 from 16 to 530 mm over 60 min at a flow rate of 1 ml/min (39Kinoshita A. Sugahara K. Anal. Biochem. 1999; 269: 367-378Crossref PubMed Scopus (191) Google Scholar) or by gel filtration HPLC on a Superdex™ Peptide HR10/30 column (Amersham Biosciences) as described previously (40Kim B.-T. Kitagawa H. Tamura J. Saito T. Kusche-Gullberg M. Lindahl U. Sugahara K. Proc. Natl. Acad. Sci. U. S. A. 2001; 98: 7176-7181Crossref PubMed Scopus (140) Google Scholar). Oversulfated DS-E/CS-H Stimulates Neurite Outgrowth of Cultured Mouse Hippocampal Neurons—Previous observations suggested that oversulfated CS variants such as CS-D and CS-E can promote neurite outgrowth of E18 rat hippocampal neurons (15Clement A.M. Nadanaka S. Masayama K. Mandl C. Sugahara K. Faissner A. J. Biol. Chem. 1998; 273: 28444-28453Abstract Full Text Full Text PDF PubMed Scopus (184) Google Scholar, 26Nadanaka S. Clement A.M. Masayama K. Faissner A. Sugahara K. J. Biol. Chem. 1998; 273: 3296-3307Abstract Full Text Full Text PDF PubMed Scopus (153) Google Scholar, 27Clement A.M. Sugahara K. Faissner A. Neurosci. Lett. 1999; 269: 125-128Crossref PubMed Scopus (120) Google Scholar). To clarify whether oversulfated DS also possesses such activities, we assessed the oversulfated DS-E, originally isolated f" @default.
- W2014788501 created "2016-06-24" @default.
- W2014788501 creator A5026189128 @default.
- W2014788501 creator A5034204273 @default.
- W2014788501 creator A5049438932 @default.
- W2014788501 creator A5064024085 @default.
- W2014788501 creator A5080549041 @default.
- W2014788501 creator A5086939226 @default.
- W2014788501 date "2003-10-01" @default.
- W2014788501 modified "2023-10-16" @default.
- W2014788501 title "Oversulfated Dermatan Sulfate Exhibits Neurite Outgrowth-promoting Activity toward Embryonic Mouse Hippocampal Neurons" @default.
- W2014788501 cites W118709469 @default.
- W2014788501 cites W1233202794 @default.
- W2014788501 cites W1523176347 @default.
- W2014788501 cites W1548090389 @default.
- W2014788501 cites W1563111112 @default.
- W2014788501 cites W1586855301 @default.
- W2014788501 cites W1595121326 @default.
- W2014788501 cites W1604664180 @default.
- W2014788501 cites W1825113405 @default.
- W2014788501 cites W1913314522 @default.
- W2014788501 cites W1967143874 @default.
- W2014788501 cites W1978500442 @default.
- W2014788501 cites W1982389284 @default.
- W2014788501 cites W1984640412 @default.
- W2014788501 cites W1988871099 @default.
- W2014788501 cites W1990991190 @default.
- W2014788501 cites W1991607152 @default.
- W2014788501 cites W1998312331 @default.
- W2014788501 cites W2003353173 @default.
- W2014788501 cites W2005793394 @default.
- W2014788501 cites W2005960069 @default.
- W2014788501 cites W2009342621 @default.
- W2014788501 cites W2012928251 @default.
- W2014788501 cites W2013584016 @default.
- W2014788501 cites W2013951424 @default.
- W2014788501 cites W2016213282 @default.
- W2014788501 cites W2017431991 @default.
- W2014788501 cites W2017704712 @default.
- W2014788501 cites W2018839286 @default.
- W2014788501 cites W2020489226 @default.
- W2014788501 cites W2021454514 @default.
- W2014788501 cites W2021504616 @default.
- W2014788501 cites W2023478207 @default.
- W2014788501 cites W2025990173 @default.
- W2014788501 cites W2040124815 @default.
- W2014788501 cites W2041187024 @default.
- W2014788501 cites W2041234923 @default.
- W2014788501 cites W2043797153 @default.
- W2014788501 cites W2053191670 @default.
- W2014788501 cites W2072164463 @default.
- W2014788501 cites W2073170672 @default.
- W2014788501 cites W2075894660 @default.
- W2014788501 cites W2081316454 @default.
- W2014788501 cites W2082131963 @default.
- W2014788501 cites W2082808714 @default.
- W2014788501 cites W2086234005 @default.
- W2014788501 cites W2089224674 @default.
- W2014788501 cites W2091187766 @default.
- W2014788501 cites W2093605055 @default.
- W2014788501 cites W2095506545 @default.
- W2014788501 cites W2095533841 @default.
- W2014788501 cites W2097530133 @default.
- W2014788501 cites W2105299151 @default.
- W2014788501 cites W2110102431 @default.
- W2014788501 cites W2120186017 @default.
- W2014788501 cites W2131308828 @default.
- W2014788501 cites W2138602666 @default.
- W2014788501 cites W2142418508 @default.
- W2014788501 cites W2151848773 @default.
- W2014788501 cites W2160835895 @default.
- W2014788501 cites W2211410772 @default.
- W2014788501 cites W2314362695 @default.
- W2014788501 cites W2419395528 @default.
- W2014788501 cites W2520622314 @default.
- W2014788501 cites W312512569 @default.
- W2014788501 cites W90346617 @default.
- W2014788501 doi "https://doi.org/10.1074/jbc.m308169200" @default.
- W2014788501 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/12917413" @default.
- W2014788501 hasPublicationYear "2003" @default.
- W2014788501 type Work @default.
- W2014788501 sameAs 2014788501 @default.
- W2014788501 citedByCount "120" @default.
- W2014788501 countsByYear W20147885012012 @default.
- W2014788501 countsByYear W20147885012013 @default.
- W2014788501 countsByYear W20147885012014 @default.
- W2014788501 countsByYear W20147885012015 @default.
- W2014788501 countsByYear W20147885012016 @default.
- W2014788501 countsByYear W20147885012017 @default.
- W2014788501 countsByYear W20147885012018 @default.
- W2014788501 countsByYear W20147885012019 @default.
- W2014788501 countsByYear W20147885012020 @default.
- W2014788501 countsByYear W20147885012021 @default.
- W2014788501 countsByYear W20147885012022 @default.
- W2014788501 countsByYear W20147885012023 @default.
- W2014788501 crossrefType "journal-article" @default.
- W2014788501 hasAuthorship W2014788501A5026189128 @default.
- W2014788501 hasAuthorship W2014788501A5034204273 @default.