Matches in SemOpenAlex for { <https://semopenalex.org/work/W2014795214> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2014795214 abstract "At present, the region growing algorithm has been used as a segmentation technique of digital images. Most region growing algorithms are using fixed or determinate criterions to distinguish disease spots from leaf image with gray level differences between leaf and disease spot. But in practice, the objects in the disease leaf image have fuzziness and uncertainty, and edges of the objects are unclear. What's more, the color of leaf and disease spots is uneven, and the gray level is overlapping, so it is difficult to use fixed threshold or determinate criteria to determine the uncertain objects in leaf disease spot images accurately. In order to improve the crop leaf spot disease image segmentation accuracy, an adaptive segmentation algorithm by integrating local threshold and seeded region growing (LTSRG) is proposed. The algorithm was implemented on VC6.0. The segmentation algorithm uses the pixels of which the R-channel gray level is more than the G-channel gray level as initial seed points (pixels), and then local threshold C <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>i</sub> is calculated for each connected seed region by Otsu. New seed pixels are included and the threshold C is re-calculated until no new seed pixel can be included. The results of LTSRG are compared with the results of threshold-based Otsu and clustering -based EM. The experiments show: The adapted segmentation method is satisfactory and highly efficient to separate disease spots from normal part of corn leaves. LTSRG algorithm is easy to realize, and can improve the precision of crop disease spot segmentation. Its image segmentation results have good region consistency and high efficiency. It is an adapting algorithm for image segmentation." @default.
- W2014795214 created "2016-06-24" @default.
- W2014795214 creator A5028484992 @default.
- W2014795214 creator A5062199461 @default.
- W2014795214 creator A5073684178 @default.
- W2014795214 creator A5079560820 @default.
- W2014795214 date "2011-10-01" @default.
- W2014795214 modified "2023-09-23" @default.
- W2014795214 title "Automatic segmentation of crop leaf spot disease images by integrating local threshold and seeded region growing" @default.
- W2014795214 cites W2118331541 @default.
- W2014795214 cites W2169099300 @default.
- W2014795214 doi "https://doi.org/10.1109/iasp.2011.6109113" @default.
- W2014795214 hasPublicationYear "2011" @default.
- W2014795214 type Work @default.
- W2014795214 sameAs 2014795214 @default.
- W2014795214 citedByCount "14" @default.
- W2014795214 countsByYear W20147952142013 @default.
- W2014795214 countsByYear W20147952142014 @default.
- W2014795214 countsByYear W20147952142015 @default.
- W2014795214 countsByYear W20147952142016 @default.
- W2014795214 countsByYear W20147952142017 @default.
- W2014795214 countsByYear W20147952142019 @default.
- W2014795214 countsByYear W20147952142020 @default.
- W2014795214 countsByYear W20147952142021 @default.
- W2014795214 countsByYear W20147952142022 @default.
- W2014795214 countsByYear W20147952142023 @default.
- W2014795214 crossrefType "proceedings-article" @default.
- W2014795214 hasAuthorship W2014795214A5028484992 @default.
- W2014795214 hasAuthorship W2014795214A5062199461 @default.
- W2014795214 hasAuthorship W2014795214A5073684178 @default.
- W2014795214 hasAuthorship W2014795214A5079560820 @default.
- W2014795214 hasConcept C124504099 @default.
- W2014795214 hasConcept C153180895 @default.
- W2014795214 hasConcept C154945302 @default.
- W2014795214 hasConcept C160633673 @default.
- W2014795214 hasConcept C206824153 @default.
- W2014795214 hasConcept C21729346 @default.
- W2014795214 hasConcept C2781255879 @default.
- W2014795214 hasConcept C31972630 @default.
- W2014795214 hasConcept C33923547 @default.
- W2014795214 hasConcept C41008148 @default.
- W2014795214 hasConcept C59822182 @default.
- W2014795214 hasConcept C65885262 @default.
- W2014795214 hasConcept C73555534 @default.
- W2014795214 hasConcept C86803240 @default.
- W2014795214 hasConcept C89600930 @default.
- W2014795214 hasConceptScore W2014795214C124504099 @default.
- W2014795214 hasConceptScore W2014795214C153180895 @default.
- W2014795214 hasConceptScore W2014795214C154945302 @default.
- W2014795214 hasConceptScore W2014795214C160633673 @default.
- W2014795214 hasConceptScore W2014795214C206824153 @default.
- W2014795214 hasConceptScore W2014795214C21729346 @default.
- W2014795214 hasConceptScore W2014795214C2781255879 @default.
- W2014795214 hasConceptScore W2014795214C31972630 @default.
- W2014795214 hasConceptScore W2014795214C33923547 @default.
- W2014795214 hasConceptScore W2014795214C41008148 @default.
- W2014795214 hasConceptScore W2014795214C59822182 @default.
- W2014795214 hasConceptScore W2014795214C65885262 @default.
- W2014795214 hasConceptScore W2014795214C73555534 @default.
- W2014795214 hasConceptScore W2014795214C86803240 @default.
- W2014795214 hasConceptScore W2014795214C89600930 @default.
- W2014795214 hasLocation W20147952141 @default.
- W2014795214 hasOpenAccess W2014795214 @default.
- W2014795214 hasPrimaryLocation W20147952141 @default.
- W2014795214 hasRelatedWork W1507266234 @default.
- W2014795214 hasRelatedWork W1669643531 @default.
- W2014795214 hasRelatedWork W2014795214 @default.
- W2014795214 hasRelatedWork W2069711651 @default.
- W2014795214 hasRelatedWork W2159066190 @default.
- W2014795214 hasRelatedWork W2350588503 @default.
- W2014795214 hasRelatedWork W2540054861 @default.
- W2014795214 hasRelatedWork W2739874619 @default.
- W2014795214 hasRelatedWork W3169504557 @default.
- W2014795214 hasRelatedWork W4306937392 @default.
- W2014795214 isParatext "false" @default.
- W2014795214 isRetracted "false" @default.
- W2014795214 magId "2014795214" @default.
- W2014795214 workType "article" @default.