Matches in SemOpenAlex for { <https://semopenalex.org/work/W2014879586> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2014879586 endingPage "9391" @default.
- W2014879586 startingPage "9389" @default.
- W2014879586 abstract "The size of the CAG tract at the Huntington’s disease (HD) locus upon transmission depends on the gender of the parent. However, the basis for the parent-of-origin effect is unknown. To test whether expansion and contraction in HD are “imprinted” in the germ cells, we isolated the X- and Y-bearing sperm of HD transgenic mice. Here we show that CAG repeat distributions in the X- and Y-bearing spermatozoa of founding fathers do not differ. These data show that gender-dependent changes in CAG repeat length arise in the embryo. The size of the CAG tract at the Huntington’s disease (HD) locus upon transmission depends on the gender of the parent. However, the basis for the parent-of-origin effect is unknown. To test whether expansion and contraction in HD are “imprinted” in the germ cells, we isolated the X- and Y-bearing sperm of HD transgenic mice. Here we show that CAG repeat distributions in the X- and Y-bearing spermatozoa of founding fathers do not differ. These data show that gender-dependent changes in CAG repeat length arise in the embryo. The mechanism for expansion in HD 1The abbreviations used are: HD, Huntington's disease; FACS, fluorescence-activated cell sorting; FISH, fluorescence in situ hybridization.1The abbreviations used are: HD, Huntington's disease; FACS, fluorescence-activated cell sorting; FISH, fluorescence in situ hybridization. and other trinucleotide disorders is not known. However, one of the poorly understood features of expansion is the gender bias that is associated with transmission. Large changes in repeat number are known to be transmitted through the paternal line in HD (1Ridley R.M. Frith C.D. Crow T.J. Conneally P.M. J. Med. Genet. 1988; 25: 589-595Crossref PubMed Scopus (123) Google Scholar, 2Trottier Y. Biancalana V. Mandel J.-L. J. Med. Genet. 1994; 31: 377-382Crossref PubMed Scopus (155) Google Scholar), SCA1 (3Orr H.T. Chung M.Y. Banfi S. Kwiatkowski Jr., T.J. Servadio A. Beaudet A.L. McCall A.E. Duvick L.A. Ranum L.P. Zoghbi H.Y. Nat. Genet. 1993; 4: 221-226Crossref PubMed Scopus (1449) Google Scholar), dentatorubral-pallidoluysian atrophy (DRPLA) (4Koide R. Ikeuchi T. Onodera O. Tanaka H. Igarashi S. Endo M. Takahashi H. Kondo R. Ishikawa A. Hayashi T. Saito M. Tomoda A. Miike T. Naito H. Ikuta F. Tsuji S. Nat. Genet. 1993; 6: 9-13Crossref Scopus (1031) Google Scholar), Machado-Joseph disease (5Ikeuchi T. Igarashi S. Takiyama Y. Onodera O. Oyake M. Takano H. Koide R. Tanaka H. Tsuji S. Am. J. Hum. Genet. 1996; 58: 730-733PubMed Google Scholar), and spinal and bulbar muscular atrophy (SBMA) (6La Spada A. Roling D.B. Harding A.E. Warner C.L. Spiegel R. Hausmanowa Petrusewicz I. Yee W.C. Fischbeck K.H. Nat. Genet. 1992; 2: 301-304Crossref PubMed Scopus (315) Google Scholar) and through the maternal line in Fragile X (7Reyniers E. Vits L. De Boulle K. Van Roy B. Van Velzen D. de Graaff E. Verkerk A.J. Jorens H.Z. Darby J.K. Oostra B. Willems P.J. Nat. Genet. 1993; 4: 143-146Crossref PubMed Scopus (243) Google Scholar, 8Malter H.E. Ilber J.C. Willemsen R. de Graaff E. Tarleton J.C. Leisti J. Warren S.T. Oostra B.A. Nat. Genet. 1997; 15: 165-169Crossref PubMed Scopus (168) Google Scholar). The gender bias transmission has also been documented in transgenic mice (9Kovtun I.V. Therneau T.M. McMurray C.T. Hum. Mol. Genet. 2000; 9: 2667-2775Crossref Scopus (54) Google Scholar, 10Mangiarini L. Sathasivam K. Mahal A. Mott R. Seller M. Bates G.P. Nat. Genet. 1997; 15: 197-200Crossref PubMed Scopus (256) Google Scholar, 11Mangiarini L. Sathasivam K. Seller M. Cozens B. Harper A. Hetherington C. Lawton M. Trottier Y. Lehrach H. Davies S.W. Bates G.P. Cell. 1996; 87: 493-506Abstract Full Text Full Text PDF PubMed Scopus (2535) Google Scholar, 12Wheeler V.C. Auerbach W. White J.K. Srinidhi J. Auerbach A. Ryan A. Duyao M.P. Vrbanac V. Weaver M. Gusella J.F. Joyner A.L. MacDonald M.E. Hum. Mol. Genet. 1999; 8: 115-122Crossref PubMed Scopus (300) Google Scholar). Similar to humans, HD transgenic mice transmit expansions predominantly through the male germ line (9Kovtun I.V. Therneau T.M. McMurray C.T. Hum. Mol. Genet. 2000; 9: 2667-2775Crossref Scopus (54) Google Scholar, 10Mangiarini L. Sathasivam K. Mahal A. Mott R. Seller M. Bates G.P. Nat. Genet. 1997; 15: 197-200Crossref PubMed Scopus (256) Google Scholar, 12Wheeler V.C. Auerbach W. White J.K. Srinidhi J. Auerbach A. Ryan A. Duyao M.P. Vrbanac V. Weaver M. Gusella J.F. Joyner A.L. MacDonald M.E. Hum. Mol. Genet. 1999; 8: 115-122Crossref PubMed Scopus (300) Google Scholar). Moreover, we found that expansion and contraction of CAG repeat size in the hHD transgene depended on the gender of the progeny (9Kovtun I.V. Therneau T.M. McMurray C.T. Hum. Mol. Genet. 2000; 9: 2667-2775Crossref Scopus (54) Google Scholar). Expansions are primarily seen in males and contractions dominate in females. The molecular basis for the parent-of-origin effect is unknown. The gender dependence of expansion can be due to differences in CAG repeat distribution in X- and Y-bearing sperm. Alternatively, the change in repeat number, contraction, or expansion can take place after fertilization in early embryogenesis. In order to distinguish between these two mechanisms, the isolation and purification of the X- and Y-bearing sperm were required. This, however, was not possible using conventional technology. In present work, we have developed techniques and used advanced technology to separate pure populations of X- and Y-bearing germ cells from HD transgenic mice. We show here that CAG repeat distributions in X- and Y-bearing parental sperm are not different. Repeat expansion occurs equally well within both X and Y chromosomes. This indicates that the gender-dependent processing of CAG repeats must take place post-zygotically. Thus, these data provide evidence for a new kind of imprinting that may be important in the interpretation of genetic data in other systems. Animals—HD transgenic male mice (line B6CBA-TgN R6/1) were originally purchased from The Jackson Laboratory. The colony was maintained at the animal core facility, Mayo Clinic/Foundation. Animals were routinely screened for the presence of HD transgene by PCR (10Mangiarini L. Sathasivam K. Mahal A. Mott R. Seller M. Bates G.P. Nat. Genet. 1997; 15: 197-200Crossref PubMed Scopus (256) Google Scholar, 18Kovtun I.V. McMurray C.T. Nat. Genet. 2001; 27: 407-411Crossref PubMed Scopus (235) Google Scholar). Preparation of Single Cell Suspension and Flow Sorting—Mouse epididymis was dissected from the animal, placed in phosphate-buffered saline, and chopped with a razor. Resulting suspension was filtered through cheesecloth. The supernatant was centrifuged at 1500 rpm, and the pellet was resuspended in phosphate-buffered saline. Mature spermatozoa then were sonicated, stained with Hoechst 33342 (5 μg/ml), and subjected to FACS analysis. Sperm samples were sorted using a modified FACSVantage (BD Biosciences, San Jose, CA) with argon laser operating in the ultraviolet spectrum. The fluorescence emission was collected at 0 and 90° to the excitation source through 418-nm long pass filters. CAG Repeat Sizing—Sorted X- and Y-bearing sperm were collected by centrifugation and lysed. DNA was isolated, and CAG repeat lengths were determined by PCR followed by GeneScan analysis as described in Refs. 10Mangiarini L. Sathasivam K. Mahal A. Mott R. Seller M. Bates G.P. Nat. Genet. 1997; 15: 197-200Crossref PubMed Scopus (256) Google Scholar and 18Kovtun I.V. McMurray C.T. Nat. Genet. 2001; 27: 407-411Crossref PubMed Scopus (235) Google Scholar. FISH Analysis—Aliquots of spermatozoa, sorted for X and Y chromosomes, were analyzed by double-FISH. The sperm cells were decondensed with 10 mm dithiothreitol, denatured using 70% formamide, and subsequently hybridized with specific probes for mouse X and Y chromosomes. The probes were centromere-specific α-satellite DNA that was directly labeled with a fluorescent dye. The X chromosome was labeled with SpectrumOrange and the Y chromosome with SpectrumGreen (Imagenetics). The spermatozoa were visualized and classified as either X- or Y-bearing using a Nikon Optiphot-2 microscope equipped with dual pass fluorescein isothiocyanate/rhodamine filter. To test whether expansion and contraction in HD are “imprinted” in Y- and X-bearing germ cells, we adapted a FACS approach to separate X- and Y-bearing spermatozoa (Fig. 1, A–C), after which we sized the CAG repeat in each population (9Kovtun I.V. Therneau T.M. McMurray C.T. Hum. Mol. Genet. 2000; 9: 2667-2775Crossref Scopus (54) Google Scholar, 10Mangiarini L. Sathasivam K. Mahal A. Mott R. Seller M. Bates G.P. Nat. Genet. 1997; 15: 197-200Crossref PubMed Scopus (256) Google Scholar) (Fig. 1D). We found that X- and Y-bearing sperm did not differ in repeat distribution in any animal tested (Fig. 1D; shown are two animals). These results were not due to population mixing. We were able to isolate successfully pure populations of X and Y chromosome-bearing spermatozoa based on the 2.8–3% total DNA content differences. Isolations were performed using a flow cytometer with specific modifications as developed by Johnson et al. (13Johnson L.A. Welch G.R. Keyvanfar K. Dorfmann A. Fugger E.F. Schulman J.D. Hum. Reprod. 1993; 10: 1733-1739Crossref Scopus (138) Google Scholar). Modifications included an additional fluorescence detector positioned at a right angle (90°) and a novel sample injection tip designed to “orient” the spermatozoa to the laser beam (14Johnson L.A. Reprod. Fertil. Dev. 1995; 7: 893-903Crossref PubMed Scopus (96) Google Scholar, 15Rens W. Welch G.R. Johnson L.A. Cytometry. 1998; 33: 476-481Crossref PubMed Scopus (49) Google Scholar). Fluorescent signal from Hoechst-stained spermatozoa oriented with their brightest edge toward the 90° detector was collected by 0° detector and showed bimodal distribution. The smaller left peak comprised Y-bearing sperm and the larger right peak comprised X-bearing sperm (Fig. 1, A–C). The two peaks overlap (Fig. 1B). Non-overlapping areas of the peaks representing populations enriched in Y and X sperm (left and right peak, respectively) were selected by the electronic sort windows and collected (Fig. 1C). The purity and accuracy of the isolated X- and Y-bearing sperm were confirmed by FISH analysis using specific X and Y probes (Fig. 2, A and B). Mean percentages of X- and Y-bearing spermatozoa indicate 94–95% efficiency of separation in tested samples (Fig. 2A). Nonparametric Wilcoxon Mann-Whitney test (9Kovtun I.V. Therneau T.M. McMurray C.T. Hum. Mol. Genet. 2000; 9: 2667-2775Crossref Scopus (54) Google Scholar) was used to compare repeat distributions (Fig. 1D) of two sorted populations. Analysis confirmed that neither the size of the midpoint (peak with the largest area) nor the distribution of the repeat sizes was different between X- and Y-bearing spermatozoa. It has been well documented that in both HD patients (16Leeflang E.P. McPeek M.S. Arnheim N. Am. J. Hum. Genet. 1996; 59: 896-904PubMed Google Scholar, 17Leeflang E.P. Tavare S. Marjoram P. Neal C.O. Srinidhi J. MacFarlane H. MacDonald M.E. Gusella J.F. de Young M. Wexler N.S. Arnheim N. Hum. Mol. Genet. 1999; 8: 173-183Crossref PubMed Scopus (96) Google Scholar) and transgenic mice (18Kovtun I.V. McMurray C.T. Nat. Genet. 2001; 27: 407-411Crossref PubMed Scopus (235) Google Scholar) expansions are present in spermatozoa. Repeats after transmission tend to expand in male progeny in mice (9Kovtun I.V. Therneau T.M. McMurray C.T. Hum. Mol. Genet. 2000; 9: 2667-2775Crossref Scopus (54) Google Scholar), and new mutations tend to arise through the paternal line in humans (19Giovannone B. Sabbadini G. Di Maio L. Calabrese O. Castaldo I. Frontali M. Novelletto A. Squitieri F. Hum. Mutat. 1997; 10: 458-464Crossref PubMed Scopus (30) Google Scholar). Thus, expansion is gender-biased. Direct testing of the gender dependence, however, has not been possible by using conventional technology. Questions were raised as to whether altered repeat sizes existed on the X and Y chromosomes of the parent before transmission. In this work, we directly tested whether expansions and contractions are segregated with X- and Y-bearing spermatozoa. We demonstrate here that the CAG repeat distributions in X- and Y-bearing parental sperm are not different (Fig. 1D). The repeat expansion occurs equally well within both X and Y chromosomes. GeneScan is accurate in showing the most prevalent sizes in the heterogeneous pool (9Kovtun I.V. Therneau T.M. McMurray C.T. Hum. Mol. Genet. 2000; 9: 2667-2775Crossref Scopus (54) Google Scholar, 10Mangiarini L. Sathasivam K. Mahal A. Mott R. Seller M. Bates G.P. Nat. Genet. 1997; 15: 197-200Crossref PubMed Scopus (256) Google Scholar, 12Wheeler V.C. Auerbach W. White J.K. Srinidhi J. Auerbach A. Ryan A. Duyao M.P. Vrbanac V. Weaver M. Gusella J.F. Joyner A.L. MacDonald M.E. Hum. Mol. Genet. 1999; 8: 115-122Crossref PubMed Scopus (300) Google Scholar, 18Kovtun I.V. McMurray C.T. Nat. Genet. 2001; 27: 407-411Crossref PubMed Scopus (235) Google Scholar). Therefore, the data are clear in evaluating repeat length alterations. We have reported previously (9Kovtun I.V. Therneau T.M. McMurray C.T. Hum. Mol. Genet. 2000; 9: 2667-2775Crossref Scopus (54) Google Scholar) rigorous statistical analysis using GeneScan data to establish the significance of the gender bias in whole animal populations. Although single cell analysis (16Leeflang E.P. McPeek M.S. Arnheim N. Am. J. Hum. Genet. 1996; 59: 896-904PubMed Google Scholar, 17Leeflang E.P. Tavare S. Marjoram P. Neal C.O. Srinidhi J. MacFarlane H. MacDonald M.E. Gusella J.F. de Young M. Wexler N.S. Arnheim N. Hum. Mol. Genet. 1999; 8: 173-183Crossref PubMed Scopus (96) Google Scholar) and small pool PCR (20Kennedy L. Shelbourne P.F. Hum. Mol. Genet. 2000; 9: 2539-2544Crossref PubMed Scopus (157) Google Scholar, 21Kennedy L. Evans E. Chen C.M. Craven L. Detloff P.J. Ennis M. Shelbourne P.F. Hum. Mol. Genet. 2003; 12: 3359-3367Crossref PubMed Scopus (230) Google Scholar, 22Zhang Y. Monckton D.G. Siciliano M.J. Connor T.H. Meistrich M.L. Hum. Mol. Genet. 2002; 11: 791-798Crossref PubMed Scopus (27) Google Scholar) have been used to size repeat lengths in human studies, the advantage to these methods is the ability to detect rare changes in the repeat sizes. We find that gene scan analysis carried out on the total population of germ cells in mice is accurate in distinguishing changes between X and Y populations of sperm. These data for the first time allow an unequivocal demonstration that the observed gender bias was not due to imprinting of the parental sperm. Rather, the gender-dependent processing of CAG repeats within the X and Y chromosomes appears to occur post-zygotically. These data point to a new kind of imprinting that depends on signals in the embryo and may influence far-reaching implications with respect to the interpretation of genetic data." @default.
- W2014879586 created "2016-06-24" @default.
- W2014879586 creator A5010362805 @default.
- W2014879586 creator A5012038882 @default.
- W2014879586 creator A5019656399 @default.
- W2014879586 creator A5047126504 @default.
- W2014879586 creator A5058921608 @default.
- W2014879586 date "2004-03-01" @default.
- W2014879586 modified "2023-10-17" @default.
- W2014879586 title "CAG Repeat Lengths in X- and Y-bearing Sperm Indicate That Gender Bias during Transmission of Huntington's Disease Gene Is Determined in the Embryo" @default.
- W2014879586 cites W1561540396 @default.
- W2014879586 cites W1966489527 @default.
- W2014879586 cites W1966630596 @default.
- W2014879586 cites W1969635765 @default.
- W2014879586 cites W1993191686 @default.
- W2014879586 cites W2012481532 @default.
- W2014879586 cites W2022257681 @default.
- W2014879586 cites W2062682951 @default.
- W2014879586 cites W2091718095 @default.
- W2014879586 cites W2094847130 @default.
- W2014879586 cites W2098670658 @default.
- W2014879586 cites W2098692072 @default.
- W2014879586 cites W2106378032 @default.
- W2014879586 cites W2119588553 @default.
- W2014879586 cites W2123179257 @default.
- W2014879586 cites W2136427444 @default.
- W2014879586 cites W2151219618 @default.
- W2014879586 cites W2165944043 @default.
- W2014879586 cites W2255469197 @default.
- W2014879586 cites W2339361287 @default.
- W2014879586 doi "https://doi.org/10.1074/jbc.m313080200" @default.
- W2014879586 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/14688268" @default.
- W2014879586 hasPublicationYear "2004" @default.
- W2014879586 type Work @default.
- W2014879586 sameAs 2014879586 @default.
- W2014879586 citedByCount "22" @default.
- W2014879586 countsByYear W20148795862014 @default.
- W2014879586 countsByYear W20148795862018 @default.
- W2014879586 countsByYear W20148795862019 @default.
- W2014879586 crossrefType "journal-article" @default.
- W2014879586 hasAuthorship W2014879586A5010362805 @default.
- W2014879586 hasAuthorship W2014879586A5012038882 @default.
- W2014879586 hasAuthorship W2014879586A5019656399 @default.
- W2014879586 hasAuthorship W2014879586A5047126504 @default.
- W2014879586 hasAuthorship W2014879586A5058921608 @default.
- W2014879586 hasBestOaLocation W20148795861 @default.
- W2014879586 hasConcept C104317684 @default.
- W2014879586 hasConcept C119599485 @default.
- W2014879586 hasConcept C126322002 @default.
- W2014879586 hasConcept C127413603 @default.
- W2014879586 hasConcept C153911025 @default.
- W2014879586 hasConcept C16685009 @default.
- W2014879586 hasConcept C196843134 @default.
- W2014879586 hasConcept C2779134260 @default.
- W2014879586 hasConcept C2780647506 @default.
- W2014879586 hasConcept C2781087480 @default.
- W2014879586 hasConcept C54355233 @default.
- W2014879586 hasConcept C71924100 @default.
- W2014879586 hasConcept C761482 @default.
- W2014879586 hasConcept C86803240 @default.
- W2014879586 hasConceptScore W2014879586C104317684 @default.
- W2014879586 hasConceptScore W2014879586C119599485 @default.
- W2014879586 hasConceptScore W2014879586C126322002 @default.
- W2014879586 hasConceptScore W2014879586C127413603 @default.
- W2014879586 hasConceptScore W2014879586C153911025 @default.
- W2014879586 hasConceptScore W2014879586C16685009 @default.
- W2014879586 hasConceptScore W2014879586C196843134 @default.
- W2014879586 hasConceptScore W2014879586C2779134260 @default.
- W2014879586 hasConceptScore W2014879586C2780647506 @default.
- W2014879586 hasConceptScore W2014879586C2781087480 @default.
- W2014879586 hasConceptScore W2014879586C54355233 @default.
- W2014879586 hasConceptScore W2014879586C71924100 @default.
- W2014879586 hasConceptScore W2014879586C761482 @default.
- W2014879586 hasConceptScore W2014879586C86803240 @default.
- W2014879586 hasIssue "10" @default.
- W2014879586 hasLocation W20148795861 @default.
- W2014879586 hasOpenAccess W2014879586 @default.
- W2014879586 hasPrimaryLocation W20148795861 @default.
- W2014879586 hasRelatedWork W1490593133 @default.
- W2014879586 hasRelatedWork W1986578106 @default.
- W2014879586 hasRelatedWork W2062158480 @default.
- W2014879586 hasRelatedWork W2091527363 @default.
- W2014879586 hasRelatedWork W2124023394 @default.
- W2014879586 hasRelatedWork W2183685009 @default.
- W2014879586 hasRelatedWork W2359559689 @default.
- W2014879586 hasRelatedWork W2915233842 @default.
- W2014879586 hasRelatedWork W2955686027 @default.
- W2014879586 hasRelatedWork W3167996694 @default.
- W2014879586 hasVolume "279" @default.
- W2014879586 isParatext "false" @default.
- W2014879586 isRetracted "false" @default.
- W2014879586 magId "2014879586" @default.
- W2014879586 workType "article" @default.