Matches in SemOpenAlex for { <https://semopenalex.org/work/W2014927353> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2014927353 abstract "Numerous path-finding applications do not take into account the actual condition on the road such as congestion or traffic situations. Since people share traffic information on Twitter, finding optimal route should consider this information. We discuss about Twitter-based traffic information extraction and its usage as heuristic in optimal path finding. Our system is divided into two modules: extraction information and path finding. We employed classification approach for developing information extraction system. The steps in extraction information module are tokenization, normalization, named entity recognition, template element task, relation extraction, and information filling. According to our experiments, Named Entity Relationship (NER) task gave out an average F-measure of 91.2% while Relation Extraction (RE) task resulted in 80.7%. The path finding module is divided into several steps which are heuristic extraction, route planning, and visualization. Our system displays a map with marked route based on traffic information extracted from Twitter." @default.
- W2014927353 created "2016-06-24" @default.
- W2014927353 creator A5010137158 @default.
- W2014927353 creator A5031833654 @default.
- W2014927353 date "2013-06-01" @default.
- W2014927353 modified "2023-09-23" @default.
- W2014927353 title "Optimal path finding based on traffic information extraction from Twitter" @default.
- W2014927353 cites W1489949474 @default.
- W2014927353 cites W1520740947 @default.
- W2014927353 cites W1969483458 @default.
- W2014927353 cites W1981314246 @default.
- W2014927353 cites W2030408698 @default.
- W2014927353 cites W2048468185 @default.
- W2014927353 cites W2089266648 @default.
- W2014927353 cites W2142015871 @default.
- W2014927353 cites W2146191280 @default.
- W2014927353 cites W2162340487 @default.
- W2014927353 cites W2169232658 @default.
- W2014927353 doi "https://doi.org/10.1109/ictss.2013.6588076" @default.
- W2014927353 hasPublicationYear "2013" @default.
- W2014927353 type Work @default.
- W2014927353 sameAs 2014927353 @default.
- W2014927353 citedByCount "17" @default.
- W2014927353 countsByYear W20149273532013 @default.
- W2014927353 countsByYear W20149273532014 @default.
- W2014927353 countsByYear W20149273532015 @default.
- W2014927353 countsByYear W20149273532016 @default.
- W2014927353 countsByYear W20149273532017 @default.
- W2014927353 countsByYear W20149273532018 @default.
- W2014927353 countsByYear W20149273532020 @default.
- W2014927353 countsByYear W20149273532021 @default.
- W2014927353 crossrefType "proceedings-article" @default.
- W2014927353 hasAuthorship W2014927353A5010137158 @default.
- W2014927353 hasAuthorship W2014927353A5031833654 @default.
- W2014927353 hasConcept C124101348 @default.
- W2014927353 hasConcept C127413603 @default.
- W2014927353 hasConcept C136886441 @default.
- W2014927353 hasConcept C144024400 @default.
- W2014927353 hasConcept C153604712 @default.
- W2014927353 hasConcept C154945302 @default.
- W2014927353 hasConcept C173801870 @default.
- W2014927353 hasConcept C19165224 @default.
- W2014927353 hasConcept C195807954 @default.
- W2014927353 hasConcept C201995342 @default.
- W2014927353 hasConcept C23123220 @default.
- W2014927353 hasConcept C2777735758 @default.
- W2014927353 hasConcept C2780451532 @default.
- W2014927353 hasConcept C31258907 @default.
- W2014927353 hasConcept C36464697 @default.
- W2014927353 hasConcept C41008148 @default.
- W2014927353 hasConceptScore W2014927353C124101348 @default.
- W2014927353 hasConceptScore W2014927353C127413603 @default.
- W2014927353 hasConceptScore W2014927353C136886441 @default.
- W2014927353 hasConceptScore W2014927353C144024400 @default.
- W2014927353 hasConceptScore W2014927353C153604712 @default.
- W2014927353 hasConceptScore W2014927353C154945302 @default.
- W2014927353 hasConceptScore W2014927353C173801870 @default.
- W2014927353 hasConceptScore W2014927353C19165224 @default.
- W2014927353 hasConceptScore W2014927353C195807954 @default.
- W2014927353 hasConceptScore W2014927353C201995342 @default.
- W2014927353 hasConceptScore W2014927353C23123220 @default.
- W2014927353 hasConceptScore W2014927353C2777735758 @default.
- W2014927353 hasConceptScore W2014927353C2780451532 @default.
- W2014927353 hasConceptScore W2014927353C31258907 @default.
- W2014927353 hasConceptScore W2014927353C36464697 @default.
- W2014927353 hasConceptScore W2014927353C41008148 @default.
- W2014927353 hasLocation W20149273531 @default.
- W2014927353 hasOpenAccess W2014927353 @default.
- W2014927353 hasPrimaryLocation W20149273531 @default.
- W2014927353 hasRelatedWork W102721276 @default.
- W2014927353 hasRelatedWork W104581431 @default.
- W2014927353 hasRelatedWork W1525881281 @default.
- W2014927353 hasRelatedWork W1593420896 @default.
- W2014927353 hasRelatedWork W1788528807 @default.
- W2014927353 hasRelatedWork W1963925644 @default.
- W2014927353 hasRelatedWork W1975174578 @default.
- W2014927353 hasRelatedWork W2126911581 @default.
- W2014927353 hasRelatedWork W2368651715 @default.
- W2014927353 hasRelatedWork W2725657302 @default.
- W2014927353 isParatext "false" @default.
- W2014927353 isRetracted "false" @default.
- W2014927353 magId "2014927353" @default.
- W2014927353 workType "article" @default.