Matches in SemOpenAlex for { <https://semopenalex.org/work/W2014957776> ?p ?o ?g. }
- W2014957776 endingPage "77" @default.
- W2014957776 startingPage "51" @default.
- W2014957776 abstract "The stability and phase relations of phengitic muscovite in a metapelitic bulk composition containing a mixed H2O+CO2 fluid were investigated at 6.5–11 GPa, 750–1050°C in synthesis experiments performed in a multianvil apparatus. Starting material consisted of a natural calcareous metapelite from the coesite zone of the Dabie Mountains, China, ultrahigh-pressure metamorphic complex that had experienced peak metamorphic pressures greater than 3 GPa. The sample contains a total of 2.1 wt.% H2O and 6.3 wt.% CO2 bound in hydrous and carbonate minerals. No additional fluid was added to the starting material. Phengite is stable in this bulk composition from 6.5 to 9 GPa at 900°C and coexists with an eclogitic phase assemblage consisting of garnet, omphacite, coesite, rutile, and fluid. Phengite dehydrates to produce K-hollandite between 8 and 11 GPa, 750–900°C. Phengite melting/dissolution occurs between 900°C and 975°C at 6.5–8 GPa and is associated with the appearance of kyanite in the phase assemblage. The formation of K-hollandite is accompanied by the appearance of magnesite and topaz-OH in the phase assemblage as well as by significant increases in the grossular content of garnet (average Xgrs=0.52, Xpy=0.19) and the jadeite content of omphacite (Xjd=0.92). Mass balance indicates that the volatile content of the fluid phase changes markedly at the phengite/K-hollandite phase boundary. At P≤8 GPa, fluid coexisting with phengite appears to be relatively CO2-rich (XCO2/XH2O=2.2), whereas fluid coexisting with K-hollandite and magnesite at 11 GPa is rich in H2O (XCO2/XH2O=0.2). Analysis of quench material and mass balance calculations indicate that fluids at all pressures and temperatures examined contain an abundance of dissolved solutes (approximately 40 mol% at 8 GPa, 60 mol% at 11 GPa) that act to dilute the volatile content of the fluid phase. The average phengite content of muscovite is positively correlated with pressure and ranges from 3.62 Si per formula unit (pfu) at 6.5 GPa to 3.80 Si pfu at 9 GPa. The extent of the phengite substitution in muscovite in this bulk composition appears to be limited to a maximum of 3.80–3.85 Si pfu at P=9 GPa. These experiments show that phengite should be stable in metasediments in mature subduction zones to depths of up to 300 km even under conditions in which aH2O≪1. Other high-pressure hydrous phases such as lawsonite, MgMgAl-pumpellyite, and topaz-OH that may form in subducted sediments do not occur within the phengite stability field in this system, and may require more H2O-rich fluid compositions in order to form. The wide range of conditions under which phengite occurs and its participation in mixed volatile reactions that may buffer the composition of the fluid phase suggest that phengite may significantly influence the nature of metasomatic fluids released from deeply subducted sediments at depths of up to 300 km at convergent plate boundaries." @default.
- W2014957776 created "2016-06-24" @default.
- W2014957776 creator A5009568820 @default.
- W2014957776 creator A5035309487 @default.
- W2014957776 date "2000-04-01" @default.
- W2014957776 modified "2023-09-23" @default.
- W2014957776 title "Experimental synthesis and phase relations of phengitic muscovite from 6.5 to 11 GPa in a calcareous metapelite from the Dabie Mountains, China" @default.
- W2014957776 cites W1967492442 @default.
- W2014957776 cites W1968806986 @default.
- W2014957776 cites W1976936206 @default.
- W2014957776 cites W1981049689 @default.
- W2014957776 cites W1995523721 @default.
- W2014957776 cites W1996729893 @default.
- W2014957776 cites W1999016143 @default.
- W2014957776 cites W2004124149 @default.
- W2014957776 cites W2020672963 @default.
- W2014957776 cites W2030114314 @default.
- W2014957776 cites W2031272494 @default.
- W2014957776 cites W2042138516 @default.
- W2014957776 cites W2043589082 @default.
- W2014957776 cites W2044626444 @default.
- W2014957776 cites W2046025164 @default.
- W2014957776 cites W2057246864 @default.
- W2014957776 cites W2057331853 @default.
- W2014957776 cites W2059750176 @default.
- W2014957776 cites W2060179714 @default.
- W2014957776 cites W2075157849 @default.
- W2014957776 cites W2076975667 @default.
- W2014957776 cites W2079117622 @default.
- W2014957776 cites W2079248898 @default.
- W2014957776 cites W2327892458 @default.
- W2014957776 cites W2330756480 @default.
- W2014957776 cites W2486384687 @default.
- W2014957776 cites W2492074709 @default.
- W2014957776 cites W2624030499 @default.
- W2014957776 cites W2901180655 @default.
- W2014957776 cites W2991408095 @default.
- W2014957776 cites W4205749704 @default.
- W2014957776 cites W4234711163 @default.
- W2014957776 cites W4241746277 @default.
- W2014957776 cites W77075935 @default.
- W2014957776 doi "https://doi.org/10.1016/s0024-4937(99)00084-5" @default.
- W2014957776 hasPublicationYear "2000" @default.
- W2014957776 type Work @default.
- W2014957776 sameAs 2014957776 @default.
- W2014957776 citedByCount "61" @default.
- W2014957776 countsByYear W20149577762012 @default.
- W2014957776 countsByYear W20149577762014 @default.
- W2014957776 countsByYear W20149577762015 @default.
- W2014957776 countsByYear W20149577762016 @default.
- W2014957776 countsByYear W20149577762017 @default.
- W2014957776 countsByYear W20149577762019 @default.
- W2014957776 countsByYear W20149577762020 @default.
- W2014957776 countsByYear W20149577762021 @default.
- W2014957776 countsByYear W20149577762022 @default.
- W2014957776 countsByYear W20149577762023 @default.
- W2014957776 crossrefType "journal-article" @default.
- W2014957776 hasAuthorship W2014957776A5009568820 @default.
- W2014957776 hasAuthorship W2014957776A5035309487 @default.
- W2014957776 hasConcept C127313418 @default.
- W2014957776 hasConcept C151730666 @default.
- W2014957776 hasConcept C173347748 @default.
- W2014957776 hasConcept C17409809 @default.
- W2014957776 hasConcept C199289684 @default.
- W2014957776 hasConcept C26687426 @default.
- W2014957776 hasConcept C2775974874 @default.
- W2014957776 hasConcept C2775988407 @default.
- W2014957776 hasConcept C2776008383 @default.
- W2014957776 hasConcept C2776581184 @default.
- W2014957776 hasConcept C2777054243 @default.
- W2014957776 hasConcept C2778250313 @default.
- W2014957776 hasConcept C2779870107 @default.
- W2014957776 hasConcept C58097730 @default.
- W2014957776 hasConcept C76349523 @default.
- W2014957776 hasConcept C77928131 @default.
- W2014957776 hasConceptScore W2014957776C127313418 @default.
- W2014957776 hasConceptScore W2014957776C151730666 @default.
- W2014957776 hasConceptScore W2014957776C173347748 @default.
- W2014957776 hasConceptScore W2014957776C17409809 @default.
- W2014957776 hasConceptScore W2014957776C199289684 @default.
- W2014957776 hasConceptScore W2014957776C26687426 @default.
- W2014957776 hasConceptScore W2014957776C2775974874 @default.
- W2014957776 hasConceptScore W2014957776C2775988407 @default.
- W2014957776 hasConceptScore W2014957776C2776008383 @default.
- W2014957776 hasConceptScore W2014957776C2776581184 @default.
- W2014957776 hasConceptScore W2014957776C2777054243 @default.
- W2014957776 hasConceptScore W2014957776C2778250313 @default.
- W2014957776 hasConceptScore W2014957776C2779870107 @default.
- W2014957776 hasConceptScore W2014957776C58097730 @default.
- W2014957776 hasConceptScore W2014957776C76349523 @default.
- W2014957776 hasConceptScore W2014957776C77928131 @default.
- W2014957776 hasIssue "1-4" @default.
- W2014957776 hasLocation W20149577761 @default.
- W2014957776 hasOpenAccess W2014957776 @default.
- W2014957776 hasPrimaryLocation W20149577761 @default.
- W2014957776 hasRelatedWork W1489454235 @default.
- W2014957776 hasRelatedWork W1898464489 @default.
- W2014957776 hasRelatedWork W1919643719 @default.