Matches in SemOpenAlex for { <https://semopenalex.org/work/W2014986885> ?p ?o ?g. }
- W2014986885 endingPage "6072" @default.
- W2014986885 startingPage "6060" @default.
- W2014986885 abstract "A complete set of ISEE plasma wave, plasma, and field data are used to identify the plasma instability responsible for the generation of extremely low frequency (ELF) electromagnetic lion roars. Lion roars detected close to the magnetopause are generated by the cyclotron instability of anisotropic ( T ⊥ − / T ∥ − ≃ 1.2) thermal electrons when the local plasma critical energy, E M = B ²/8π N , falls to values ( E M ∼ 10–30 eV) close to or below the electron thermal energy, 25 eV, as a result of decreases in B . A companion theoretical paper, Thorne and Tsurutani (1981), demonstrates that the convective growth rates of lion roars under these conditions is greater than 100 dB R E −1 . The lion roars are terminated by increases in the ambient magnetic field magnitude and consequential increases in E M to values greater than 100 eV. Because there are few resonant particles at these high energies, the growth rate decreases by 3 orders of magnitude and measurable growth ceases. The value of the absolute upper limit of the frequency of unstable waves predicted by theory, ω max = A − Ω − /( A − + 1), is compared with observations. The predictions and observations are found to be in general, but not exact, agreement. Several possible explanations are explored. The quasi‐periodic, ∼20‐s magnetic and plasma oscillations which cause the variations in E M and hence alternately drive the cyclotron waves unstable and then stable are also investigated. The plasma and field pressures are shown to be out of phase, while the total pressure (electron + ion + field) remains relatively constant. Most of the pressure is associated with the particle thermal motion. The large 2∶1 variations in field strength cause large oscillations in β (8π P / B ²), from β = 1–2 at field maximum to β = 10–25 at field minimum. Analysis of the high‐resolution magnetic fields at the two closely separated spacecraft, ISEE 1 and 2, rule out the possibility that these field and plasma oscillations could be due to magnetopause motion. Cross‐correlation analyses of the magnetic fields at the two spacecraft and the time delays for maximum correlation are shown to be consistent with the magnetic structures being quasi‐static in nature. The temporal variations of the plasma and fields are due to spatial structures convecting past the spacecraft at the magnetosheath flow speed. The quasi‐periodic structures are ∼20 proton gyroradii in scale in the plasma rest frame. Magnetic structures with similar scale lengths are also shown to exist in the magnetosheaths of Jupiter and Saturn (Pioneer 11 data). The results are consistent with the interpretation that these magnetohydrodynamic structures are nonoscillatory ‘waves’ generated by the drift mirror instability. The condition for instability, β ⊥ /β ∥ > 1 + (1/β ⊥ ), is met for the cases studied in this paper. The electron and ion instabilities are intimately coupled. The generation of high β (>10), low critical energy ( E M = 10–30 eV) regions by the drift mirror instability leads to the electrons becoming cyclotron unstable. The consequential whistler mode lion roars can then be ducted by the enhanced‐density, low‐field regions. Thus lion roar durations may not represent the propagation time for an electromagnetic wave packet travelling at the group velocity, but may correspond to the convection of a magnetosheath duct (drift mirror wave) past the spacecraft. The cyclotron and drift mirror instabilities occurring in the magnetosheath are natural relaxation processes that reduce the plasma pressure anisotropies created by preferential heating of the solar wind plasma as it passes through the bow shock and the further compression that takes place as the plasma and fields approach the near‐subsolar magnetopause. One consequence of the onset of the instabilities and isotropization of the plasma is the enhanced expulsion of the plasma along field lines toward the flanks of the magnetosheath. It remains to be determined if this mechanism is a general process of ‘plasma removal’ from planetary magnetosheaths. Furthermore, the presence of nonoscillatory drift mirror waves and the convection of these structures to the magnetopause may have important consequences for magnetic merging. The alternating high and low β regions and the ( T ⊥ > T ∥ ) plasma temperature anisotropies may lead to patchy, sporadic reconnection." @default.
- W2014986885 created "2016-06-24" @default.
- W2014986885 creator A5000417245 @default.
- W2014986885 creator A5008010903 @default.
- W2014986885 creator A5038768644 @default.
- W2014986885 creator A5046712974 @default.
- W2014986885 creator A5049299108 @default.
- W2014986885 creator A5067053161 @default.
- W2014986885 creator A5085076864 @default.
- W2014986885 date "1982-08-01" @default.
- W2014986885 modified "2023-10-11" @default.
- W2014986885 title "Lion roars and nonoscillatory drift mirror waves in the magnetosheath" @default.
- W2014986885 cites W1673925160 @default.
- W2014986885 cites W1963967432 @default.
- W2014986885 cites W1985649273 @default.
- W2014986885 cites W1986294342 @default.
- W2014986885 cites W1987732235 @default.
- W2014986885 cites W1994832107 @default.
- W2014986885 cites W1997224920 @default.
- W2014986885 cites W1999872398 @default.
- W2014986885 cites W2002779275 @default.
- W2014986885 cites W2007746767 @default.
- W2014986885 cites W2014899648 @default.
- W2014986885 cites W2025211092 @default.
- W2014986885 cites W2025523112 @default.
- W2014986885 cites W2046755532 @default.
- W2014986885 cites W2058819478 @default.
- W2014986885 cites W2063983451 @default.
- W2014986885 cites W2065730973 @default.
- W2014986885 cites W2068587978 @default.
- W2014986885 cites W2070440744 @default.
- W2014986885 cites W2074170741 @default.
- W2014986885 cites W2076991243 @default.
- W2014986885 cites W2082685827 @default.
- W2014986885 cites W2086233230 @default.
- W2014986885 cites W2089637333 @default.
- W2014986885 cites W2094671811 @default.
- W2014986885 cites W2095178283 @default.
- W2014986885 cites W2098668960 @default.
- W2014986885 cites W2103855877 @default.
- W2014986885 cites W2115740239 @default.
- W2014986885 cites W2123405829 @default.
- W2014986885 cites W2125110344 @default.
- W2014986885 cites W2143067656 @default.
- W2014986885 cites W2150113131 @default.
- W2014986885 cites W2150286358 @default.
- W2014986885 cites W2151602077 @default.
- W2014986885 cites W2156169843 @default.
- W2014986885 cites W2164426124 @default.
- W2014986885 doi "https://doi.org/10.1029/ja087ia08p06060" @default.
- W2014986885 hasPublicationYear "1982" @default.
- W2014986885 type Work @default.
- W2014986885 sameAs 2014986885 @default.
- W2014986885 citedByCount "377" @default.
- W2014986885 countsByYear W20149868852012 @default.
- W2014986885 countsByYear W20149868852013 @default.
- W2014986885 countsByYear W20149868852014 @default.
- W2014986885 countsByYear W20149868852015 @default.
- W2014986885 countsByYear W20149868852016 @default.
- W2014986885 countsByYear W20149868852017 @default.
- W2014986885 countsByYear W20149868852018 @default.
- W2014986885 countsByYear W20149868852019 @default.
- W2014986885 countsByYear W20149868852020 @default.
- W2014986885 countsByYear W20149868852021 @default.
- W2014986885 countsByYear W20149868852022 @default.
- W2014986885 countsByYear W20149868852023 @default.
- W2014986885 crossrefType "journal-article" @default.
- W2014986885 hasAuthorship W2014986885A5000417245 @default.
- W2014986885 hasAuthorship W2014986885A5008010903 @default.
- W2014986885 hasAuthorship W2014986885A5038768644 @default.
- W2014986885 hasAuthorship W2014986885A5046712974 @default.
- W2014986885 hasAuthorship W2014986885A5049299108 @default.
- W2014986885 hasAuthorship W2014986885A5067053161 @default.
- W2014986885 hasAuthorship W2014986885A5085076864 @default.
- W2014986885 hasConcept C115260700 @default.
- W2014986885 hasConcept C121332964 @default.
- W2014986885 hasConcept C130443932 @default.
- W2014986885 hasConcept C134581325 @default.
- W2014986885 hasConcept C140161248 @default.
- W2014986885 hasConcept C147120987 @default.
- W2014986885 hasConcept C157899998 @default.
- W2014986885 hasConcept C184779094 @default.
- W2014986885 hasConcept C185544564 @default.
- W2014986885 hasConcept C207821765 @default.
- W2014986885 hasConcept C39527238 @default.
- W2014986885 hasConcept C57879066 @default.
- W2014986885 hasConcept C61922881 @default.
- W2014986885 hasConcept C62520636 @default.
- W2014986885 hasConcept C82706917 @default.
- W2014986885 hasConceptScore W2014986885C115260700 @default.
- W2014986885 hasConceptScore W2014986885C121332964 @default.
- W2014986885 hasConceptScore W2014986885C130443932 @default.
- W2014986885 hasConceptScore W2014986885C134581325 @default.
- W2014986885 hasConceptScore W2014986885C140161248 @default.
- W2014986885 hasConceptScore W2014986885C147120987 @default.
- W2014986885 hasConceptScore W2014986885C157899998 @default.
- W2014986885 hasConceptScore W2014986885C184779094 @default.
- W2014986885 hasConceptScore W2014986885C185544564 @default.