Matches in SemOpenAlex for { <https://semopenalex.org/work/W2014989628> ?p ?o ?g. }
- W2014989628 endingPage "122" @default.
- W2014989628 startingPage "107" @default.
- W2014989628 abstract "Abstract A test site for CO 2 geological storage is situated in Hontomin (Burgos, northern Spain) with a reservoir rock that is mainly composed of limestone. During and after CO 2 injection, the resulting CO 2 -rich acid brine gives rise to the dissolution of carbonate minerals (calcite and dolomite) and gypsum (or anhydrite at depth) may precipitate since the reservoir brine contains sulfate. Experiments using columns filled with crushed limestone or dolostone were conducted under different P – p CO 2 conditions (atmospheric: 1–10 − 3.5 bar; subcritical: 10–10 bar; and supercritical: 150–34 bar), T (25, 40 and 60 °C) and input solution compositions (gypsum-undersaturated and gypsum-equilibrated solutions). We evaluated the effect of these parameters on the coupled reactions of calcite/dolomite dissolution and gypsum/anhydrite precipitation. The CrunchFlow and PhreeqC (v.3) numerical codes were used to perform reactive transport simulations of the experiments. Within the range of P – p CO 2 and T of this study only gypsum precipitation took place (no anhydrite was detected) and this only occurred when the injected solution was equilibrated with gypsum. Under the P – p CO 2 – T conditions, the volume of precipitated gypsum was smaller than the volume of dissolved carbonate minerals, yielding an increase in porosity (Δϕ up to ≈ 4%). A decrease in T favored limestone dissolution regardless of p CO 2 owing to increasing undersaturation with decreasing temperature. However, gypsum precipitation was favored at high T and under atmospheric p CO 2 conditions but not at high T and under 10 bar of p CO 2 conditions. The increase in limestone dissolution with p CO 2 was directly attributed to pH, which was more acidic at higher p CO 2 . Limestone dissolution induced late gypsum precipitation (long induction time) in contrast to dolostone dissolution, which promoted rapid gypsum precipitation. Moreover, owing to the slow kinetics of dolomite dissolution with respect to that of calcite, both the volume of dissolved mineral and the increase in porosity were larger in the limestone experiments than in the dolostone ones under all p CO 2 conditions (10 − 3.5 and 10 bar). By increasing p CO 2 , carbonate dissolution occurred along the column whereas it was localized in the very inlet under atmospheric conditions. This was due to the buffer capacity of the carbonic acid, which maintains pH at around 5 and keeps the solution undersaturated with respect to calcite and dolomite along the column. 1D reactive transport simulations reproduced the experimental data (carbonate dissolution and gypsum precipitation for different P – p CO 2 – T conditions). Drawing on reaction rate laws in the literature, we used the reactive surface area to fit the models to the experimental data. The values of the reactive surface area were much smaller than those calculated from the geometric areas." @default.
- W2014989628 created "2016-06-24" @default.
- W2014989628 creator A5042321529 @default.
- W2014989628 creator A5050542637 @default.
- W2014989628 creator A5068492829 @default.
- W2014989628 creator A5069378790 @default.
- W2014989628 date "2014-09-01" @default.
- W2014989628 modified "2023-10-17" @default.
- W2014989628 title "Interaction between CO2-rich sulfate solutions and carbonate reservoir rocks from atmospheric to supercritical CO2 conditions: Experiments and modeling" @default.
- W2014989628 cites W1487226342 @default.
- W2014989628 cites W1499314001 @default.
- W2014989628 cites W1801494906 @default.
- W2014989628 cites W1961369140 @default.
- W2014989628 cites W1968059710 @default.
- W2014989628 cites W1972939651 @default.
- W2014989628 cites W1975717988 @default.
- W2014989628 cites W1976999983 @default.
- W2014989628 cites W1977975286 @default.
- W2014989628 cites W1979329811 @default.
- W2014989628 cites W1983316441 @default.
- W2014989628 cites W1985499900 @default.
- W2014989628 cites W1985762111 @default.
- W2014989628 cites W1989834007 @default.
- W2014989628 cites W1992346705 @default.
- W2014989628 cites W1993885178 @default.
- W2014989628 cites W1994869677 @default.
- W2014989628 cites W1999222658 @default.
- W2014989628 cites W2001536668 @default.
- W2014989628 cites W2001674108 @default.
- W2014989628 cites W2002916241 @default.
- W2014989628 cites W2011288380 @default.
- W2014989628 cites W2013080982 @default.
- W2014989628 cites W2021174999 @default.
- W2014989628 cites W2023144725 @default.
- W2014989628 cites W2032702254 @default.
- W2014989628 cites W2034242645 @default.
- W2014989628 cites W2034555818 @default.
- W2014989628 cites W2048550424 @default.
- W2014989628 cites W2056627274 @default.
- W2014989628 cites W2056667120 @default.
- W2014989628 cites W2063656463 @default.
- W2014989628 cites W2064572976 @default.
- W2014989628 cites W2079286250 @default.
- W2014989628 cites W2085359656 @default.
- W2014989628 cites W2085404336 @default.
- W2014989628 cites W2088378572 @default.
- W2014989628 cites W2095132924 @default.
- W2014989628 cites W2102951339 @default.
- W2014989628 cites W2106562658 @default.
- W2014989628 cites W2124309295 @default.
- W2014989628 cites W2135183586 @default.
- W2014989628 cites W2136203181 @default.
- W2014989628 cites W2159900744 @default.
- W2014989628 cites W2293201919 @default.
- W2014989628 cites W4232305988 @default.
- W2014989628 doi "https://doi.org/10.1016/j.chemgeo.2014.06.004" @default.
- W2014989628 hasPublicationYear "2014" @default.
- W2014989628 type Work @default.
- W2014989628 sameAs 2014989628 @default.
- W2014989628 citedByCount "43" @default.
- W2014989628 countsByYear W20149896282014 @default.
- W2014989628 countsByYear W20149896282015 @default.
- W2014989628 countsByYear W20149896282016 @default.
- W2014989628 countsByYear W20149896282017 @default.
- W2014989628 countsByYear W20149896282018 @default.
- W2014989628 countsByYear W20149896282019 @default.
- W2014989628 countsByYear W20149896282020 @default.
- W2014989628 countsByYear W20149896282021 @default.
- W2014989628 countsByYear W20149896282022 @default.
- W2014989628 countsByYear W20149896282023 @default.
- W2014989628 crossrefType "journal-article" @default.
- W2014989628 hasAuthorship W2014989628A5042321529 @default.
- W2014989628 hasAuthorship W2014989628A5050542637 @default.
- W2014989628 hasAuthorship W2014989628A5068492829 @default.
- W2014989628 hasAuthorship W2014989628A5069378790 @default.
- W2014989628 hasBestOaLocation W20149896283 @default.
- W2014989628 hasConcept C118419359 @default.
- W2014989628 hasConcept C127313418 @default.
- W2014989628 hasConcept C17409809 @default.
- W2014989628 hasConcept C178790620 @default.
- W2014989628 hasConcept C185592680 @default.
- W2014989628 hasConcept C19320362 @default.
- W2014989628 hasConcept C1965285 @default.
- W2014989628 hasConcept C199289684 @default.
- W2014989628 hasConcept C2778343803 @default.
- W2014989628 hasConcept C2780659211 @default.
- W2014989628 hasConcept C5900021 @default.
- W2014989628 hasConcept C6494504 @default.
- W2014989628 hasConceptScore W2014989628C118419359 @default.
- W2014989628 hasConceptScore W2014989628C127313418 @default.
- W2014989628 hasConceptScore W2014989628C17409809 @default.
- W2014989628 hasConceptScore W2014989628C178790620 @default.
- W2014989628 hasConceptScore W2014989628C185592680 @default.
- W2014989628 hasConceptScore W2014989628C19320362 @default.
- W2014989628 hasConceptScore W2014989628C1965285 @default.
- W2014989628 hasConceptScore W2014989628C199289684 @default.
- W2014989628 hasConceptScore W2014989628C2778343803 @default.
- W2014989628 hasConceptScore W2014989628C2780659211 @default.