Matches in SemOpenAlex for { <https://semopenalex.org/work/W2015012443> ?p ?o ?g. }
- W2015012443 endingPage "245" @default.
- W2015012443 startingPage "235" @default.
- W2015012443 abstract "We have used x-ray diffraction to study the interactions between myelin membranes in the sciatic nerve (PNS) and optic nerve (CNS) as a function of pH (2-10) and ionic strength (0-0.18). The period of myelin was found to change in a systematic manner with pH and ionic strength. PNS periods ranged from 165 to 250 A or more, while CNS periods ranged from 150 to 230 A. The native periods were observed only near physiological ionic strength at neutral or alkaline pH. The smallest periods were observed in the pH range 2.5-4 for PNS myelin and pH 2.5-5 for CNS myelin. The minimum period was also observed for PNS myelin after prolonged incubation in distilled water. At pH 4, within these acidic pH ranges, myelin period increased slightly with ionic strength; however, above these ranges, the period increased with pH and decreased with ionic strength. Electron density profiles calculated at different pH and ionic strength showed that the major structural alteration underlying the changes in period was in the width of the aqueous space at the extracellular apposition of membranes; the width of the cytoplasmic space was virtually constant. Assuming that the equilibrium myelin periods are determined by a balance of nonspecific forces/i.e., the electrostatic repulsion force and the van der Walls attractive force, as well as the short-range repulsion force (hydration force, or steric stabilization), then values in the period-dependency curve can be used to define the isoelectric pH and exclusion length of the membrane. The exclusion length, which is related to the minimum period at isoelectric pH, was used to calculate the electrostatic repulsion force given the other forces. The electrostatic repulsion was then used to calculate the surface potential, which in turn was used to calculate the surface charge density (at different pH and ionic strength). We found the negative surface charge increases with pH at constant ionic strength and with ionic strength at constant pH. We suggest that the former is due to deprotonation of the ionizable groups on the surface while the latter is due to ion binding. Interpretation of our data in terms of the chemical composition of myelin is given in the accompanying paper (Inouye and Kirschner, 1988). We also calculated the total potential energy functions for the different equilibrium periods and found that the energy minima became shallower and broader with increasing membrane separation. Finally, it was difficult to account directly for certain structural transitions from a balance of nonspecific forces. Such transitions included the abrupt appearance of the native period at alkaline pH and physiological ionic strength and the discontinuous compaction after prolonged treatment in distilled water. Possibly, in PNS myelin conformational modification of PO glycoprotein occurs under these conditions. The invariance of the cytoplasmic space suggests the presence of specific short-range interactions between surfaces at this apposition." @default.
- W2015012443 created "2016-06-24" @default.
- W2015012443 creator A5031751687 @default.
- W2015012443 creator A5039151870 @default.
- W2015012443 date "1988-02-01" @default.
- W2015012443 modified "2023-09-26" @default.
- W2015012443 title "Membrane interactions in nerve myelin. I. Determination of surface charge from effects of pH and ionic strength on period" @default.
- W2015012443 cites W1457260379 @default.
- W2015012443 cites W1497989081 @default.
- W2015012443 cites W1507949644 @default.
- W2015012443 cites W1543850973 @default.
- W2015012443 cites W1972156382 @default.
- W2015012443 cites W1974975263 @default.
- W2015012443 cites W1985309426 @default.
- W2015012443 cites W1985591905 @default.
- W2015012443 cites W1985737470 @default.
- W2015012443 cites W1985808169 @default.
- W2015012443 cites W1987821757 @default.
- W2015012443 cites W1988739433 @default.
- W2015012443 cites W1989483951 @default.
- W2015012443 cites W1990951656 @default.
- W2015012443 cites W1991532863 @default.
- W2015012443 cites W1992045675 @default.
- W2015012443 cites W1998845238 @default.
- W2015012443 cites W2001793272 @default.
- W2015012443 cites W2004244644 @default.
- W2015012443 cites W2020300268 @default.
- W2015012443 cites W2020453274 @default.
- W2015012443 cites W2024316707 @default.
- W2015012443 cites W2030181238 @default.
- W2015012443 cites W2032898316 @default.
- W2015012443 cites W2033547107 @default.
- W2015012443 cites W2046231048 @default.
- W2015012443 cites W2046795352 @default.
- W2015012443 cites W2049567264 @default.
- W2015012443 cites W2056169846 @default.
- W2015012443 cites W2057035144 @default.
- W2015012443 cites W2058665291 @default.
- W2015012443 cites W2067942106 @default.
- W2015012443 cites W2070243142 @default.
- W2015012443 cites W2087011528 @default.
- W2015012443 cites W2093589942 @default.
- W2015012443 cites W2094984789 @default.
- W2015012443 cites W2099080749 @default.
- W2015012443 cites W2108942635 @default.
- W2015012443 cites W2126816585 @default.
- W2015012443 cites W2131911879 @default.
- W2015012443 cites W2135675645 @default.
- W2015012443 cites W2179395528 @default.
- W2015012443 cites W2182904977 @default.
- W2015012443 cites W2335482875 @default.
- W2015012443 cites W2922816857 @default.
- W2015012443 doi "https://doi.org/10.1016/s0006-3495(88)83085-6" @default.
- W2015012443 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/1330144" @default.
- W2015012443 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/3345332" @default.
- W2015012443 hasPublicationYear "1988" @default.
- W2015012443 type Work @default.
- W2015012443 sameAs 2015012443 @default.
- W2015012443 citedByCount "79" @default.
- W2015012443 countsByYear W20150124432012 @default.
- W2015012443 countsByYear W20150124432013 @default.
- W2015012443 countsByYear W20150124432014 @default.
- W2015012443 countsByYear W20150124432015 @default.
- W2015012443 countsByYear W20150124432016 @default.
- W2015012443 countsByYear W20150124432017 @default.
- W2015012443 countsByYear W20150124432018 @default.
- W2015012443 countsByYear W20150124432020 @default.
- W2015012443 countsByYear W20150124432021 @default.
- W2015012443 countsByYear W20150124432022 @default.
- W2015012443 crossrefType "journal-article" @default.
- W2015012443 hasAuthorship W2015012443A5031751687 @default.
- W2015012443 hasAuthorship W2015012443A5039151870 @default.
- W2015012443 hasBestOaLocation W20150124431 @default.
- W2015012443 hasConcept C113196181 @default.
- W2015012443 hasConcept C12554922 @default.
- W2015012443 hasConcept C145148216 @default.
- W2015012443 hasConcept C147789679 @default.
- W2015012443 hasConcept C169760540 @default.
- W2015012443 hasConcept C178790620 @default.
- W2015012443 hasConcept C181199279 @default.
- W2015012443 hasConcept C184651966 @default.
- W2015012443 hasConcept C185592680 @default.
- W2015012443 hasConcept C187428577 @default.
- W2015012443 hasConcept C2182769 @default.
- W2015012443 hasConcept C2778609137 @default.
- W2015012443 hasConcept C2779429693 @default.
- W2015012443 hasConcept C41625074 @default.
- W2015012443 hasConcept C43617362 @default.
- W2015012443 hasConcept C529278444 @default.
- W2015012443 hasConcept C55493867 @default.
- W2015012443 hasConcept C86803240 @default.
- W2015012443 hasConcept C96294017 @default.
- W2015012443 hasConceptScore W2015012443C113196181 @default.
- W2015012443 hasConceptScore W2015012443C12554922 @default.
- W2015012443 hasConceptScore W2015012443C145148216 @default.
- W2015012443 hasConceptScore W2015012443C147789679 @default.
- W2015012443 hasConceptScore W2015012443C169760540 @default.
- W2015012443 hasConceptScore W2015012443C178790620 @default.