Matches in SemOpenAlex for { <https://semopenalex.org/work/W201503990> ?p ?o ?g. }
- W201503990 endingPage "226" @default.
- W201503990 startingPage "177" @default.
- W201503990 abstract "We argue in favor of representing living cells as automata and review demonstrations that autonomous cells can form patterns by responding to local variations in the strain fields that arise from their individual or collective motions. An autonomous cell's response to strain stimuli is assumed to be effected by internally-generated, internally-powered forces, which generally move the cell in directions other than those implied by external energy gradients. Evidence of cells acting as strain-cued automata have been inferred from patterns observed in nature and from experiments conducted in vitro. Simulations that mimic particular cases of pattern forming share the idealization that cells are assumed to pass information among themselves solely via mechanical boundary conditions, i.e., the tractions and displacements present at their membranes. This assumption opens three mechanisms for pattern formation in large cell populations: wavelike behavior, kinematic feedback in cell motility that can lead to sliding and rotational patterns, and directed migration during invasions. Wavelike behavior among ameloblast cells during amelogenesis (the formation of dental enamel) has been inferred from enamel microstructure, while strain waves in populations of epithelial cells have been observed in vitro. One hypothesized kinematic feedback mechanism, “enhanced shear motility”, accounts successfully for the spontaneous formation of layered patterns during amelogenesis in the mouse incisor. Directed migration is exemplified by a theory of invader cells that sense and respond to the strains they themselves create in the host population as they invade it: analysis shows that the strain fields contain positional information that could aid the formation of cell network structures, stabilizing the slender geometry of branches and helping govern the frequency of branch bifurcation and branch coalescence (the formation of closed networks). In simulations of pattern formation in homogeneous populations and network formation by invaders, morphological outcomes are governed by the ratio of the rates of two competing time dependent processes, one a migration velocity and the other a relaxation velocity related to the propagation of strain information. Relaxation velocities are approximately constant for different species and organs, whereas cell migration rates vary by three orders of magnitude. We conjecture that developmental processes use rapid cell migration to achieve certain outcomes, and slow migration to achieve others. We infer from analysis of host relaxation during network formation that a transition exists in the mechanical response of a host cell from animate to inanimate behavior when its strain changes at a rate that exceeds 10−4–10−3 s−1. The transition has previously been observed in experiments conducted in vitro." @default.
- W201503990 created "2016-06-24" @default.
- W201503990 creator A5011493527 @default.
- W201503990 creator A5091612454 @default.
- W201503990 date "2016-02-01" @default.
- W201503990 modified "2023-09-30" @default.
- W201503990 title "Cells as strain-cued automata" @default.
- W201503990 cites W117946748 @default.
- W201503990 cites W1488792046 @default.
- W201503990 cites W1512208174 @default.
- W201503990 cites W1558338432 @default.
- W201503990 cites W1573441810 @default.
- W201503990 cites W1933458559 @default.
- W201503990 cites W1963773881 @default.
- W201503990 cites W1973531794 @default.
- W201503990 cites W1973923856 @default.
- W201503990 cites W1974954154 @default.
- W201503990 cites W1975186692 @default.
- W201503990 cites W1975792983 @default.
- W201503990 cites W1977973890 @default.
- W201503990 cites W1979366429 @default.
- W201503990 cites W1980661496 @default.
- W201503990 cites W1981422071 @default.
- W201503990 cites W1982139954 @default.
- W201503990 cites W1982204785 @default.
- W201503990 cites W1984672583 @default.
- W201503990 cites W1986893947 @default.
- W201503990 cites W1987349240 @default.
- W201503990 cites W1987413515 @default.
- W201503990 cites W1988507067 @default.
- W201503990 cites W1994076220 @default.
- W201503990 cites W1997629759 @default.
- W201503990 cites W2001010305 @default.
- W201503990 cites W2004423354 @default.
- W201503990 cites W2004965883 @default.
- W201503990 cites W2004993458 @default.
- W201503990 cites W2007530020 @default.
- W201503990 cites W2008040977 @default.
- W201503990 cites W2009187334 @default.
- W201503990 cites W2010486643 @default.
- W201503990 cites W2012262316 @default.
- W201503990 cites W2015984183 @default.
- W201503990 cites W2019712497 @default.
- W201503990 cites W2020369961 @default.
- W201503990 cites W2020373346 @default.
- W201503990 cites W2020510671 @default.
- W201503990 cites W2020644315 @default.
- W201503990 cites W2021134180 @default.
- W201503990 cites W2021500235 @default.
- W201503990 cites W2022777558 @default.
- W201503990 cites W2024053014 @default.
- W201503990 cites W2025261511 @default.
- W201503990 cites W2026211608 @default.
- W201503990 cites W2029643432 @default.
- W201503990 cites W2031876645 @default.
- W201503990 cites W2032756435 @default.
- W201503990 cites W2034807390 @default.
- W201503990 cites W2034957927 @default.
- W201503990 cites W2036424138 @default.
- W201503990 cites W2044979535 @default.
- W201503990 cites W2048195900 @default.
- W201503990 cites W2054635074 @default.
- W201503990 cites W2054877682 @default.
- W201503990 cites W2055125266 @default.
- W201503990 cites W2057274917 @default.
- W201503990 cites W2059118514 @default.
- W201503990 cites W2059177632 @default.
- W201503990 cites W2061220010 @default.
- W201503990 cites W2065331538 @default.
- W201503990 cites W2067204159 @default.
- W201503990 cites W2070102480 @default.
- W201503990 cites W2073243845 @default.
- W201503990 cites W2073551059 @default.
- W201503990 cites W2074574519 @default.
- W201503990 cites W2082374785 @default.
- W201503990 cites W2082502013 @default.
- W201503990 cites W2084293525 @default.
- W201503990 cites W2087271480 @default.
- W201503990 cites W2088392532 @default.
- W201503990 cites W2088404888 @default.
- W201503990 cites W2090114371 @default.
- W201503990 cites W2090275556 @default.
- W201503990 cites W2090683259 @default.
- W201503990 cites W2091389429 @default.
- W201503990 cites W2094252824 @default.
- W201503990 cites W2096105657 @default.
- W201503990 cites W2100001951 @default.
- W201503990 cites W2101542661 @default.
- W201503990 cites W2104244397 @default.
- W201503990 cites W2105421586 @default.
- W201503990 cites W2111642605 @default.
- W201503990 cites W2112251383 @default.
- W201503990 cites W2112479189 @default.
- W201503990 cites W2114257111 @default.
- W201503990 cites W2119488021 @default.
- W201503990 cites W2121858600 @default.
- W201503990 cites W2124278109 @default.
- W201503990 cites W2124911358 @default.