Matches in SemOpenAlex for { <https://semopenalex.org/work/W2015087393> ?p ?o ?g. }
- W2015087393 endingPage "193" @default.
- W2015087393 startingPage "187" @default.
- W2015087393 abstract "In the paper (Wang and Morse, 1996) that preceded this study, we presented results of experiments performed using a silica gel crystal growth technique to produce pyrite under conditions approximating those commonly occurring in anoxic marine sediments. The primary focus of that study was on the chemical pathways that pyrite formation follows and how differing conditions influenced reaction kinetics and morphology of pyrite crystals. In this paper, we present results of further long-term (up to 1 y) studies of pyrite formation, using the silica gel experimental technique, in which we investigated the role that different precursor iron (hydr)oxide minerals and marine organic matter play in pyrite formation. The minerals studied were akaganeite (β-FeOOH), ferrihydrite (Fe5HO8 · 4H2O), goethite (α-FeOOH), hematite (α-Fe2O3), lepidocrocite (γ-FeOOH), and magnetite (Fe3O4). Marine organic matter used in this study was freeze-dried plankton collected from near-surface water in the Gulf of Mexico. The influence of precursor iron (hydr)oxide mineralogy, although important for initial iron sulfidization rates, was relatively minor compared to other variables, such as solution pH and sulfide concentration, in controlling the rate of pyrite formation. Consequently, major variations in the observed rate of pyritization of different iron (hydr)oxide minerals in sediments (e.g., Canfield and Berner, 1987) may reflect large differences in surface areas of the minerals rather than their intrinsic reactivity and is a confirmation of the estimates of Canfield et al. (1992) that most iron oxides have similar reactivity. The presence of marine organic matter (freeze-dried plankton) caused an increase in the sulfidization rate of goethite and a major (about 20 ×) decrease in the rate of pyrite formation. This can be interpreted as indicating that organic matter-iron interactions are important in both iron (hydr)oxide dissolution, and pyrite nucleation and growth. A possible explanation for this behavior is that dissolved organic matter produced during the long experiments (up to 1 year) increased the rate of goethite dissolution while inhibiting pyrite nucleation and growth by complexing iron. The lessons learned in the study of other mineral reaction kinetics (e.g., calcite and aragonite), that rates determined in pure inorganic systems, may not always be reliably applied to natural systems where organic matter can significantly influence mineral dissolution and growth rates, are, alas, repeated here for pyrite." @default.
- W2015087393 created "2016-06-24" @default.
- W2015087393 creator A5008921604 @default.
- W2015087393 creator A5090361507 @default.
- W2015087393 date "1997-07-01" @default.
- W2015087393 modified "2023-09-27" @default.
- W2015087393 title "Pyrite formation under conditions approximating those in anoxic sediments: II. Influence of precursor iron minerals and organic matter" @default.
- W2015087393 cites W1969282993 @default.
- W2015087393 cites W1978677683 @default.
- W2015087393 cites W1991569790 @default.
- W2015087393 cites W1999153555 @default.
- W2015087393 cites W2004373591 @default.
- W2015087393 cites W2035398133 @default.
- W2015087393 cites W2043857071 @default.
- W2015087393 cites W2074506463 @default.
- W2015087393 cites W2082256156 @default.
- W2015087393 cites W2082586909 @default.
- W2015087393 cites W2082719189 @default.
- W2015087393 cites W2110018891 @default.
- W2015087393 cites W2317272997 @default.
- W2015087393 cites W4242985506 @default.
- W2015087393 doi "https://doi.org/10.1016/s0304-4203(97)00050-9" @default.
- W2015087393 hasPublicationYear "1997" @default.
- W2015087393 type Work @default.
- W2015087393 sameAs 2015087393 @default.
- W2015087393 citedByCount "68" @default.
- W2015087393 countsByYear W20150873932012 @default.
- W2015087393 countsByYear W20150873932013 @default.
- W2015087393 countsByYear W20150873932014 @default.
- W2015087393 countsByYear W20150873932015 @default.
- W2015087393 countsByYear W20150873932016 @default.
- W2015087393 countsByYear W20150873932017 @default.
- W2015087393 countsByYear W20150873932019 @default.
- W2015087393 countsByYear W20150873932020 @default.
- W2015087393 countsByYear W20150873932021 @default.
- W2015087393 countsByYear W20150873932022 @default.
- W2015087393 countsByYear W20150873932023 @default.
- W2015087393 crossrefType "journal-article" @default.
- W2015087393 hasAuthorship W2015087393A5008921604 @default.
- W2015087393 hasAuthorship W2015087393A5090361507 @default.
- W2015087393 hasConcept C107872376 @default.
- W2015087393 hasConcept C108970007 @default.
- W2015087393 hasConcept C127313418 @default.
- W2015087393 hasConcept C130452526 @default.
- W2015087393 hasConcept C150394285 @default.
- W2015087393 hasConcept C151730666 @default.
- W2015087393 hasConcept C178790620 @default.
- W2015087393 hasConcept C179104552 @default.
- W2015087393 hasConcept C185592680 @default.
- W2015087393 hasConcept C199289684 @default.
- W2015087393 hasConcept C2776062231 @default.
- W2015087393 hasConcept C2777697756 @default.
- W2015087393 hasConcept C2777781897 @default.
- W2015087393 hasConcept C2777787761 @default.
- W2015087393 hasConcept C2777807490 @default.
- W2015087393 hasConcept C2779131772 @default.
- W2015087393 hasConcept C2780184401 @default.
- W2015087393 hasConcept C2780191927 @default.
- W2015087393 hasConcept C2780596425 @default.
- W2015087393 hasConcept C2780804967 @default.
- W2015087393 hasConcept C48743137 @default.
- W2015087393 hasConcept C518881349 @default.
- W2015087393 hasConceptScore W2015087393C107872376 @default.
- W2015087393 hasConceptScore W2015087393C108970007 @default.
- W2015087393 hasConceptScore W2015087393C127313418 @default.
- W2015087393 hasConceptScore W2015087393C130452526 @default.
- W2015087393 hasConceptScore W2015087393C150394285 @default.
- W2015087393 hasConceptScore W2015087393C151730666 @default.
- W2015087393 hasConceptScore W2015087393C178790620 @default.
- W2015087393 hasConceptScore W2015087393C179104552 @default.
- W2015087393 hasConceptScore W2015087393C185592680 @default.
- W2015087393 hasConceptScore W2015087393C199289684 @default.
- W2015087393 hasConceptScore W2015087393C2776062231 @default.
- W2015087393 hasConceptScore W2015087393C2777697756 @default.
- W2015087393 hasConceptScore W2015087393C2777781897 @default.
- W2015087393 hasConceptScore W2015087393C2777787761 @default.
- W2015087393 hasConceptScore W2015087393C2777807490 @default.
- W2015087393 hasConceptScore W2015087393C2779131772 @default.
- W2015087393 hasConceptScore W2015087393C2780184401 @default.
- W2015087393 hasConceptScore W2015087393C2780191927 @default.
- W2015087393 hasConceptScore W2015087393C2780596425 @default.
- W2015087393 hasConceptScore W2015087393C2780804967 @default.
- W2015087393 hasConceptScore W2015087393C48743137 @default.
- W2015087393 hasConceptScore W2015087393C518881349 @default.
- W2015087393 hasIssue "3-4" @default.
- W2015087393 hasLocation W20150873931 @default.
- W2015087393 hasOpenAccess W2015087393 @default.
- W2015087393 hasPrimaryLocation W20150873931 @default.
- W2015087393 hasRelatedWork W17520349 @default.
- W2015087393 hasRelatedWork W1970048946 @default.
- W2015087393 hasRelatedWork W2015087393 @default.
- W2015087393 hasRelatedWork W2016154360 @default.
- W2015087393 hasRelatedWork W2035398133 @default.
- W2015087393 hasRelatedWork W2073210768 @default.
- W2015087393 hasRelatedWork W2616015649 @default.
- W2015087393 hasRelatedWork W2776785789 @default.
- W2015087393 hasRelatedWork W4205671265 @default.
- W2015087393 hasRelatedWork W2741565905 @default.