Matches in SemOpenAlex for { <https://semopenalex.org/work/W2015129595> ?p ?o ?g. }
- W2015129595 endingPage "311" @default.
- W2015129595 startingPage "294" @default.
- W2015129595 abstract "Remotely sensed estimates of snow thaw offer the potential of more complete spatial coverage across remote, undersampled areas such as the terrestrial Arctic drainage basin. We compared the timing of spring thaw determined from approximately 25 km resolution daily radar backscatter data with observed daily river discharge time series and model simulated snow water content data for 52 basins (5000–10,000 km2) across Canada and Alaska for the spring of 2000. Algorithms for identifying critical thaw transitions were applied to daily backscatter time series from the SeaWinds scatterometer aboard NASA QuikSCAT, the observed discharge data, and model snow water from the pan-Arctic Water Balance Model (PWBM). Radar-derived thaw shows general agreement with discharge increases (Mean Absolute Difference, MAD=21 days, r=0.45), with better agreement (16 days) in basins with moderate-high runoff due to snow thaw. Even better agreement is noted when comparing the scatterometer-derived primary thaw timing with model simulated snow water increase (MAD=14 days, r=0.75). Good correspondence is found across higher latitude basins in western Canada and Alaska, while the largest discrepancies appear at the driest watersheds with lower snow and daily discharge amounts. Extending this analysis to the entire pan-Arctic drainage basin, we compared scatterometer-derived date of the primary (maximum) thaw with the timing of simulated snow water increases from the PWBM. Good agreement is found across much of the pan-Arctic; discrepancies for over half of the analyzed grid cells are less than one week. MADs are 11.7 days for the Arctic basin in Eurasian and 15.1 days across North America. Mean biases are low; 2.1 and −3.1 days for Eurasia and North America, respectively. Stronger backscatter response (high signal-low noise) is noted with higher seasonal snow accumulation, low to moderate tree cover and low topographic complexity. Although our results show inconsistent performance along coastal regions and warmer southerly parts of the study domain, active radar instruments such as SeaWinds offer the potential for monitoring high-latitude snow thaw at spatial scales appropriate for pan-Arctic applications in near real time. Applications include hydrological model verification, analysis of lags between snow thaw and river response, and determination of large-scale snow extent." @default.
- W2015129595 created "2016-06-24" @default.
- W2015129595 creator A5005715411 @default.
- W2015129595 creator A5012801147 @default.
- W2015129595 creator A5016401080 @default.
- W2015129595 creator A5028050255 @default.
- W2015129595 creator A5058261207 @default.
- W2015129595 creator A5070204347 @default.
- W2015129595 creator A5086618647 @default.
- W2015129595 date "2005-10-01" @default.
- W2015129595 modified "2023-10-02" @default.
- W2015129595 title "Remote sensing of snow thaw at the pan-Arctic scale using the SeaWinds scatterometer" @default.
- W2015129595 cites W1964478938 @default.
- W2015129595 cites W1966652425 @default.
- W2015129595 cites W1968972700 @default.
- W2015129595 cites W1971142106 @default.
- W2015129595 cites W1973220900 @default.
- W2015129595 cites W1973584596 @default.
- W2015129595 cites W1983363555 @default.
- W2015129595 cites W1987540621 @default.
- W2015129595 cites W2009584434 @default.
- W2015129595 cites W2009927232 @default.
- W2015129595 cites W2010053656 @default.
- W2015129595 cites W2029449972 @default.
- W2015129595 cites W2039088888 @default.
- W2015129595 cites W2058692935 @default.
- W2015129595 cites W2080352380 @default.
- W2015129595 cites W2103425624 @default.
- W2015129595 cites W2105886055 @default.
- W2015129595 cites W2114664960 @default.
- W2015129595 cites W2115371293 @default.
- W2015129595 cites W2122389133 @default.
- W2015129595 cites W2126737399 @default.
- W2015129595 cites W2129310435 @default.
- W2015129595 cites W2144260774 @default.
- W2015129595 cites W2146377630 @default.
- W2015129595 cites W2152320606 @default.
- W2015129595 cites W2158031389 @default.
- W2015129595 cites W2172819965 @default.
- W2015129595 cites W2173251738 @default.
- W2015129595 cites W2174732504 @default.
- W2015129595 cites W2179952737 @default.
- W2015129595 cites W2737809323 @default.
- W2015129595 doi "https://doi.org/10.1016/j.jhydrol.2004.12.018" @default.
- W2015129595 hasPublicationYear "2005" @default.
- W2015129595 type Work @default.
- W2015129595 sameAs 2015129595 @default.
- W2015129595 citedByCount "55" @default.
- W2015129595 countsByYear W20151295952012 @default.
- W2015129595 countsByYear W20151295952013 @default.
- W2015129595 countsByYear W20151295952014 @default.
- W2015129595 countsByYear W20151295952015 @default.
- W2015129595 countsByYear W20151295952016 @default.
- W2015129595 countsByYear W20151295952017 @default.
- W2015129595 countsByYear W20151295952018 @default.
- W2015129595 countsByYear W20151295952020 @default.
- W2015129595 countsByYear W20151295952021 @default.
- W2015129595 countsByYear W20151295952022 @default.
- W2015129595 countsByYear W20151295952023 @default.
- W2015129595 crossrefType "journal-article" @default.
- W2015129595 hasAuthorship W2015129595A5005715411 @default.
- W2015129595 hasAuthorship W2015129595A5012801147 @default.
- W2015129595 hasAuthorship W2015129595A5016401080 @default.
- W2015129595 hasAuthorship W2015129595A5028050255 @default.
- W2015129595 hasAuthorship W2015129595A5058261207 @default.
- W2015129595 hasAuthorship W2015129595A5070204347 @default.
- W2015129595 hasAuthorship W2015129595A5086618647 @default.
- W2015129595 hasConcept C111368507 @default.
- W2015129595 hasConcept C122523270 @default.
- W2015129595 hasConcept C127313418 @default.
- W2015129595 hasConcept C13280743 @default.
- W2015129595 hasConcept C153294291 @default.
- W2015129595 hasConcept C161067210 @default.
- W2015129595 hasConcept C18903297 @default.
- W2015129595 hasConcept C197046000 @default.
- W2015129595 hasConcept C205649164 @default.
- W2015129595 hasConcept C2776212561 @default.
- W2015129595 hasConcept C2983043445 @default.
- W2015129595 hasConcept C30354325 @default.
- W2015129595 hasConcept C39432304 @default.
- W2015129595 hasConcept C41008148 @default.
- W2015129595 hasConcept C42832001 @default.
- W2015129595 hasConcept C49204034 @default.
- W2015129595 hasConcept C50477045 @default.
- W2015129595 hasConcept C518008717 @default.
- W2015129595 hasConcept C555944384 @default.
- W2015129595 hasConcept C76155785 @default.
- W2015129595 hasConcept C86803240 @default.
- W2015129595 hasConceptScore W2015129595C111368507 @default.
- W2015129595 hasConceptScore W2015129595C122523270 @default.
- W2015129595 hasConceptScore W2015129595C127313418 @default.
- W2015129595 hasConceptScore W2015129595C13280743 @default.
- W2015129595 hasConceptScore W2015129595C153294291 @default.
- W2015129595 hasConceptScore W2015129595C161067210 @default.
- W2015129595 hasConceptScore W2015129595C18903297 @default.
- W2015129595 hasConceptScore W2015129595C197046000 @default.
- W2015129595 hasConceptScore W2015129595C205649164 @default.
- W2015129595 hasConceptScore W2015129595C2776212561 @default.