Matches in SemOpenAlex for { <https://semopenalex.org/work/W2015144420> ?p ?o ?g. }
- W2015144420 endingPage "197" @default.
- W2015144420 startingPage "155" @default.
- W2015144420 abstract "Coke is central to blast furnace operation, but because it is the most expensive raw material used, there is continuing pressure to minimize its use. Consequently, it has become increasingly pertinent to measure and predict the factors affecting coke performance more accurately. Coke performance is affected both by its properties and blast furnace operation. Recently, the importance of the minerals in coke in determining its performance in the blast furnace has been recognized. Minerals in coke influence its reaction with gas, metal and slag phases. This paper reviews coke behavior in an operating blast furnace with the main emphasis being on the role of its inherent mineral matter. Various techniques including advanced approaches such as scanning electron microscopy (SEM) and quantitative X-ray diffraction (XRD) have been used to identify and quantify coke minerals. Fundamental studies based on bench-scale reactors have highlighted the role of various mineral phases on the kinetics of gasification, hot-metal carburization and slag reactions. Because coke reaction rates are influenced by the constituent mineral phases differently, conventional ash analysis is not sufficient to determine the true impact of coke minerals on coke reactivity. The dominant catalytic phases of coke minerals can be identified and related to coke gasification with CO2 at low temperatures. The kinetics of hot-metal carburization by coke and its temperature dependence is influenced by the melting behavior of minerals. Coke–slag reaction rates are largely influenced by total mineral matter content as well as composition. Coke changes its properties during descent through an experimental blast furnace (EBF) and some of these changes are presented. The increase in the ordering of the carbon in the coke as it descends the EBF can be related to increases in coke ordering in a bench-scale reactor, indicating that order in a particular coke may serve as a thermometer of its maximum exposure temperature. Moreover, coke fines emissions are influenced by the extent of graphitization in industrial blast furnaces. In contrast, coke reactivity in an operating blast furnace is influenced by recirculating alkalis as well as inherent mineral matter. Mineral phases of industrial cokes were found to be changed after CO2 gasification with increasing reaction temperatures. Coke quality needs in current and emerging blast furnace process innovations are discussed to highlight that existing tests are not sufficient. A comprehensive coke quality index is required, particularly one that incorporates the heterogeneity of coke minerals, in order to make a reliable assessment of the impact of cokes on iron-making reactions." @default.
- W2015144420 created "2016-06-24" @default.
- W2015144420 creator A5002556770 @default.
- W2015144420 creator A5006155578 @default.
- W2015144420 creator A5034084767 @default.
- W2015144420 creator A5040260798 @default.
- W2015144420 creator A5041041634 @default.
- W2015144420 creator A5047588545 @default.
- W2015144420 creator A5052301636 @default.
- W2015144420 creator A5056076805 @default.
- W2015144420 creator A5073059312 @default.
- W2015144420 creator A5077840171 @default.
- W2015144420 date "2008-04-01" @default.
- W2015144420 modified "2023-10-05" @default.
- W2015144420 title "Minerals and iron-making reactions in blast furnaces" @default.
- W2015144420 cites W112552179 @default.
- W2015144420 cites W1252569173 @default.
- W2015144420 cites W1769434195 @default.
- W2015144420 cites W1963692639 @default.
- W2015144420 cites W1968274544 @default.
- W2015144420 cites W1970185566 @default.
- W2015144420 cites W1971137161 @default.
- W2015144420 cites W1971199109 @default.
- W2015144420 cites W1976261162 @default.
- W2015144420 cites W1976779842 @default.
- W2015144420 cites W1979186776 @default.
- W2015144420 cites W1982454837 @default.
- W2015144420 cites W1992368577 @default.
- W2015144420 cites W1995221365 @default.
- W2015144420 cites W1999953184 @default.
- W2015144420 cites W2003910970 @default.
- W2015144420 cites W2006720084 @default.
- W2015144420 cites W2006909437 @default.
- W2015144420 cites W2007452920 @default.
- W2015144420 cites W2007975985 @default.
- W2015144420 cites W2014572823 @default.
- W2015144420 cites W2019647408 @default.
- W2015144420 cites W2020287132 @default.
- W2015144420 cites W2025696190 @default.
- W2015144420 cites W2029310334 @default.
- W2015144420 cites W2029723478 @default.
- W2015144420 cites W2030200804 @default.
- W2015144420 cites W2031462075 @default.
- W2015144420 cites W2031853277 @default.
- W2015144420 cites W2037186025 @default.
- W2015144420 cites W2039698251 @default.
- W2015144420 cites W2047664799 @default.
- W2015144420 cites W2048815117 @default.
- W2015144420 cites W2050486814 @default.
- W2015144420 cites W2053281604 @default.
- W2015144420 cites W2054110273 @default.
- W2015144420 cites W2071713628 @default.
- W2015144420 cites W2076853478 @default.
- W2015144420 cites W2078042023 @default.
- W2015144420 cites W2079371157 @default.
- W2015144420 cites W2088166182 @default.
- W2015144420 cites W2088694337 @default.
- W2015144420 cites W2101688514 @default.
- W2015144420 cites W2115857996 @default.
- W2015144420 cites W2129512941 @default.
- W2015144420 cites W2130242393 @default.
- W2015144420 cites W2137505896 @default.
- W2015144420 cites W2241992940 @default.
- W2015144420 cites W2318775604 @default.
- W2015144420 cites W2508804685 @default.
- W2015144420 cites W2514108309 @default.
- W2015144420 cites W2526160250 @default.
- W2015144420 cites W2997883311 @default.
- W2015144420 cites W3161289527 @default.
- W2015144420 cites W578267474 @default.
- W2015144420 cites W586490219 @default.
- W2015144420 cites W589742204 @default.
- W2015144420 cites W634175174 @default.
- W2015144420 cites W1996054160 @default.
- W2015144420 doi "https://doi.org/10.1016/j.pecs.2007.04.001" @default.
- W2015144420 hasPublicationYear "2008" @default.
- W2015144420 type Work @default.
- W2015144420 sameAs 2015144420 @default.
- W2015144420 citedByCount "99" @default.
- W2015144420 countsByYear W20151444202012 @default.
- W2015144420 countsByYear W20151444202013 @default.
- W2015144420 countsByYear W20151444202014 @default.
- W2015144420 countsByYear W20151444202015 @default.
- W2015144420 countsByYear W20151444202016 @default.
- W2015144420 countsByYear W20151444202017 @default.
- W2015144420 countsByYear W20151444202018 @default.
- W2015144420 countsByYear W20151444202019 @default.
- W2015144420 countsByYear W20151444202020 @default.
- W2015144420 countsByYear W20151444202021 @default.
- W2015144420 countsByYear W20151444202022 @default.
- W2015144420 countsByYear W20151444202023 @default.
- W2015144420 crossrefType "journal-article" @default.
- W2015144420 hasAuthorship W2015144420A5002556770 @default.
- W2015144420 hasAuthorship W2015144420A5006155578 @default.
- W2015144420 hasAuthorship W2015144420A5034084767 @default.
- W2015144420 hasAuthorship W2015144420A5040260798 @default.
- W2015144420 hasAuthorship W2015144420A5041041634 @default.
- W2015144420 hasAuthorship W2015144420A5047588545 @default.