Matches in SemOpenAlex for { <https://semopenalex.org/work/W2015151924> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2015151924 endingPage "220" @default.
- W2015151924 startingPage "209" @default.
- W2015151924 abstract "Abstract In this report the applicability of an improved method of image segmentation of infrared microspectroscopic data from histological specimens is demonstrated. Fourier transform infrared (FT‐IR) microspectroscopy was used to record hyperspectral data sets from human colorectal adenocarcinomas and to build up a database of spatially resolved tissue spectra. This database of colon microspectra comprised 4120 high‐quality FT‐IR point spectra from 28 patient samples and 12 different histological structures. The spectral information contained in the database was employed to teach and validate multilayer perceptron artificial neural network (MLP‐ANN) models. These classification models were then employed for database analysis and utilised to produce false colour images from complete tissue maps of FT‐IR microspectra. An important aspect of this study was also to demonstrate how the diagnostic sensitivity and specificity can be specifically optimised. An example is given which shows that changes of the number of teaching patterns per class can be used to modify these two interrelated test parameters. The definition of ANN topology turned out to be crucial to achieve a high degree of correspondence between the gold standard of histopathology and IR spectroscopy. Particularly, a hierarchical scheme of ANN classification proved to be superior for the reliable classification of tissue spectra. It was found that unsupervised methods of clustering, specifically agglomerative hierarchical clustering (AHC), were helpful in the initial phases of model generation. Optimal classification results could be achieved if the class definitions for the ANNs were carried out by considering the classification information provided by cluster analysis. Copyright © 2007 John Wiley & Sons, Ltd." @default.
- W2015151924 created "2016-06-24" @default.
- W2015151924 creator A5058627588 @default.
- W2015151924 creator A5063252357 @default.
- W2015151924 creator A5086552188 @default.
- W2015151924 creator A5087243794 @default.
- W2015151924 date "2006-05-01" @default.
- W2015151924 modified "2023-10-17" @default.
- W2015151924 title "Artificial neural networks as supervised techniques for FT-IR microspectroscopic imaging" @default.
- W2015151924 cites W1553155526 @default.
- W2015151924 cites W1968051891 @default.
- W2015151924 cites W1968671875 @default.
- W2015151924 cites W1977448398 @default.
- W2015151924 cites W1977615915 @default.
- W2015151924 cites W1983109590 @default.
- W2015151924 cites W2004128332 @default.
- W2015151924 cites W2014557836 @default.
- W2015151924 cites W2016372905 @default.
- W2015151924 cites W2016381774 @default.
- W2015151924 cites W2031502420 @default.
- W2015151924 cites W2033700815 @default.
- W2015151924 cites W2035955433 @default.
- W2015151924 cites W2064867676 @default.
- W2015151924 cites W2143908786 @default.
- W2015151924 cites W2154830597 @default.
- W2015151924 cites W2164784007 @default.
- W2015151924 cites W4248684714 @default.
- W2015151924 doi "https://doi.org/10.1002/cem.993" @default.
- W2015151924 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2786225" @default.
- W2015151924 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19960119" @default.
- W2015151924 hasPublicationYear "2006" @default.
- W2015151924 type Work @default.
- W2015151924 sameAs 2015151924 @default.
- W2015151924 citedByCount "84" @default.
- W2015151924 countsByYear W20151519242012 @default.
- W2015151924 countsByYear W20151519242013 @default.
- W2015151924 countsByYear W20151519242014 @default.
- W2015151924 countsByYear W20151519242015 @default.
- W2015151924 countsByYear W20151519242016 @default.
- W2015151924 countsByYear W20151519242017 @default.
- W2015151924 countsByYear W20151519242018 @default.
- W2015151924 countsByYear W20151519242019 @default.
- W2015151924 countsByYear W20151519242020 @default.
- W2015151924 countsByYear W20151519242021 @default.
- W2015151924 crossrefType "journal-article" @default.
- W2015151924 hasAuthorship W2015151924A5058627588 @default.
- W2015151924 hasAuthorship W2015151924A5063252357 @default.
- W2015151924 hasAuthorship W2015151924A5086552188 @default.
- W2015151924 hasAuthorship W2015151924A5087243794 @default.
- W2015151924 hasBestOaLocation W20151519242 @default.
- W2015151924 hasConcept C124101348 @default.
- W2015151924 hasConcept C153180895 @default.
- W2015151924 hasConcept C154945302 @default.
- W2015151924 hasConcept C159078339 @default.
- W2015151924 hasConcept C179717631 @default.
- W2015151924 hasConcept C2777212361 @default.
- W2015151924 hasConcept C41008148 @default.
- W2015151924 hasConcept C50644808 @default.
- W2015151924 hasConcept C73555534 @default.
- W2015151924 hasConcept C89600930 @default.
- W2015151924 hasConcept C92835128 @default.
- W2015151924 hasConceptScore W2015151924C124101348 @default.
- W2015151924 hasConceptScore W2015151924C153180895 @default.
- W2015151924 hasConceptScore W2015151924C154945302 @default.
- W2015151924 hasConceptScore W2015151924C159078339 @default.
- W2015151924 hasConceptScore W2015151924C179717631 @default.
- W2015151924 hasConceptScore W2015151924C2777212361 @default.
- W2015151924 hasConceptScore W2015151924C41008148 @default.
- W2015151924 hasConceptScore W2015151924C50644808 @default.
- W2015151924 hasConceptScore W2015151924C73555534 @default.
- W2015151924 hasConceptScore W2015151924C89600930 @default.
- W2015151924 hasConceptScore W2015151924C92835128 @default.
- W2015151924 hasIssue "5" @default.
- W2015151924 hasLocation W20151519241 @default.
- W2015151924 hasLocation W20151519242 @default.
- W2015151924 hasLocation W20151519243 @default.
- W2015151924 hasLocation W20151519244 @default.
- W2015151924 hasOpenAccess W2015151924 @default.
- W2015151924 hasPrimaryLocation W20151519241 @default.
- W2015151924 hasRelatedWork W2019190440 @default.
- W2015151924 hasRelatedWork W2027399350 @default.
- W2015151924 hasRelatedWork W2044184146 @default.
- W2015151924 hasRelatedWork W2060875994 @default.
- W2015151924 hasRelatedWork W2070598848 @default.
- W2015151924 hasRelatedWork W2072166414 @default.
- W2015151924 hasRelatedWork W3034375524 @default.
- W2015151924 hasRelatedWork W3034864990 @default.
- W2015151924 hasRelatedWork W3200375535 @default.
- W2015151924 hasRelatedWork W3209970181 @default.
- W2015151924 hasVolume "20" @default.
- W2015151924 isParatext "false" @default.
- W2015151924 isRetracted "false" @default.
- W2015151924 magId "2015151924" @default.
- W2015151924 workType "article" @default.