Matches in SemOpenAlex for { <https://semopenalex.org/work/W2015153057> ?p ?o ?g. }
- W2015153057 abstract "We derive exact general relations between various observables for $N$ spin-1/2 fermions with zero-range or short-range interactions, in continuous space or on a lattice, in two or three dimensions, in an arbitrary external potential. Some of our results generalize known relations between the large-momentum behavior of the momentum distribution, the short-distance behaviors of the pair distribution function and of the one-body density matrix, the norm of the regular part of the wave function, the derivative of the energy with respect to the scattering length or to time, and the interaction energy (in the case of finite-range interactions). The expression relating the energy to a functional of the momentum distribution is also generalized. Moreover, we find expressions (in terms of the regular part of the wave function) for the derivative of the energy with respect to the effective range ${r}_{e}$ in three dimensions (3D), and to the effective range squared in two dimensions (2D). They express the fact that the leading corrections to the eigenenergies due to a finite-interaction range are linear in the effective range in 3D (and in its square in 2D) with model-independent coefficients. There are subtleties in the validity condition of this conclusion, for the 2D continuous space (where it is saved by factors that are only logarithmically large in the zero-range limit) and for the 3D lattice models (where it applies only for some magic dispersion relations on the lattice that sufficiently weakly break Galilean invariance and that do not have cusps at the border of the first Brillouin zone; an example of such relations is constructed). Furthermore, the subleading short-distance behavior of the pair distribution function and the subleading $1/{k}^{6}$ tail of the momentum distribution are related to $ensuremath{partial}E/ensuremath{partial}{r}_{e}$ [or to $ensuremath{partial}E/ensuremath{partial}({r}_{e}^{2})$ in 2D]. The second-order derivative of energy with respect to the inverse (or the logarithm in the two-dimensional case) of the scattering length is found to be expressible for any eigenstate in terms of the eigen-wave-function's regular parts; this implies that, at thermal equilibrium, this second-order derivative, taken at fixed entropy, is negative. Applications of the general relations are presented: We compute corrections to exactly solvable two-body and three-body problems and find agreement with available numerics; for the unitary gas in an isotropic harmonic trap, we determine how the finite-$1/a$ and finite-range energy corrections vary within each energy ladder (associated with the SO(2,1) dynamical symmetry) and we deduce the frequency shift and the collapse time of the breathing mode; for the bulk unitary gas, we compare to fixed-node Monte Carlo data, and we estimate the deviation from the Bertsch parameter due to the finite interaction-range in typical experiments." @default.
- W2015153057 created "2016-06-24" @default.
- W2015153057 creator A5010437530 @default.
- W2015153057 creator A5031838262 @default.
- W2015153057 date "2012-07-19" @default.
- W2015153057 modified "2023-10-01" @default.
- W2015153057 title "General relations for quantum gases in two and three dimensions: Two-component fermions" @default.
- W2015153057 cites W110437176 @default.
- W2015153057 cites W1486677677 @default.
- W2015153057 cites W1486855687 @default.
- W2015153057 cites W1501869673 @default.
- W2015153057 cites W1534550770 @default.
- W2015153057 cites W1539284159 @default.
- W2015153057 cites W1585894047 @default.
- W2015153057 cites W1587290248 @default.
- W2015153057 cites W1602301868 @default.
- W2015153057 cites W1754442117 @default.
- W2015153057 cites W1909292304 @default.
- W2015153057 cites W1948059261 @default.
- W2015153057 cites W1963791923 @default.
- W2015153057 cites W1964775409 @default.
- W2015153057 cites W1965344878 @default.
- W2015153057 cites W1966225266 @default.
- W2015153057 cites W1966726960 @default.
- W2015153057 cites W1966872072 @default.
- W2015153057 cites W1971041450 @default.
- W2015153057 cites W1971287055 @default.
- W2015153057 cites W1971808631 @default.
- W2015153057 cites W1972495272 @default.
- W2015153057 cites W1973581428 @default.
- W2015153057 cites W1976949734 @default.
- W2015153057 cites W1978033806 @default.
- W2015153057 cites W1978051344 @default.
- W2015153057 cites W1978345366 @default.
- W2015153057 cites W1978623490 @default.
- W2015153057 cites W1979308046 @default.
- W2015153057 cites W1979540867 @default.
- W2015153057 cites W1979700341 @default.
- W2015153057 cites W1980674110 @default.
- W2015153057 cites W1980849086 @default.
- W2015153057 cites W1981221685 @default.
- W2015153057 cites W1981468506 @default.
- W2015153057 cites W1984129709 @default.
- W2015153057 cites W1984729461 @default.
- W2015153057 cites W1986059455 @default.
- W2015153057 cites W1986168108 @default.
- W2015153057 cites W1987455000 @default.
- W2015153057 cites W1987777837 @default.
- W2015153057 cites W1988721182 @default.
- W2015153057 cites W1988790691 @default.
- W2015153057 cites W1989369166 @default.
- W2015153057 cites W1991602497 @default.
- W2015153057 cites W1991807063 @default.
- W2015153057 cites W1993927949 @default.
- W2015153057 cites W1996692332 @default.
- W2015153057 cites W1997569142 @default.
- W2015153057 cites W1999064637 @default.
- W2015153057 cites W2000706487 @default.
- W2015153057 cites W2000903910 @default.
- W2015153057 cites W2002542393 @default.
- W2015153057 cites W2003100061 @default.
- W2015153057 cites W2004000433 @default.
- W2015153057 cites W2005133890 @default.
- W2015153057 cites W2005949970 @default.
- W2015153057 cites W2007069044 @default.
- W2015153057 cites W2007828593 @default.
- W2015153057 cites W2009322766 @default.
- W2015153057 cites W2010469516 @default.
- W2015153057 cites W2011515960 @default.
- W2015153057 cites W2013027987 @default.
- W2015153057 cites W2014786292 @default.
- W2015153057 cites W2016721665 @default.
- W2015153057 cites W2018846830 @default.
- W2015153057 cites W2019345582 @default.
- W2015153057 cites W2024279197 @default.
- W2015153057 cites W2025085649 @default.
- W2015153057 cites W2026297730 @default.
- W2015153057 cites W2026359444 @default.
- W2015153057 cites W2027232051 @default.
- W2015153057 cites W2031536171 @default.
- W2015153057 cites W2032122594 @default.
- W2015153057 cites W2032935166 @default.
- W2015153057 cites W2034251480 @default.
- W2015153057 cites W2034493009 @default.
- W2015153057 cites W2036249467 @default.
- W2015153057 cites W2040393204 @default.
- W2015153057 cites W2041765423 @default.
- W2015153057 cites W2044017583 @default.
- W2015153057 cites W2044394362 @default.
- W2015153057 cites W2045649013 @default.
- W2015153057 cites W2045655853 @default.
- W2015153057 cites W2048104651 @default.
- W2015153057 cites W2049736198 @default.
- W2015153057 cites W2050558778 @default.
- W2015153057 cites W2052113609 @default.
- W2015153057 cites W2052126968 @default.
- W2015153057 cites W2052318752 @default.
- W2015153057 cites W2052994228 @default.
- W2015153057 cites W2054978598 @default.
- W2015153057 cites W2055913117 @default.