Matches in SemOpenAlex for { <https://semopenalex.org/work/W2015191519> ?p ?o ?g. }
- W2015191519 endingPage "50" @default.
- W2015191519 startingPage "37" @default.
- W2015191519 abstract "Magnesium isotopic ratios have been used as a natural tracer to study weathering processes and biogeochemical pathways in surficial environments, but few have focused on the mechanisms that control Mg isotope fractionation during shale weathering. In this study we focus on understanding Mg isotope fractionation in the Shale Hills catchment in central Pennsylvania. Mg isotope ratios were measured systematically in weathering products, along geochemical pathways of Mg during shale weathering: from bedrock to soils and soil pore water on a planar hillslope, and to sediments, stream water, and groundwater on a valley floor. Significant variations of Mg isotopic values were observed: δ26Mg values (− 0.6‰ to − 0.1‰) of stream and soil pore waters are about ~ 0.5‰ to 1‰ lighter than the shale bedrock δ(26Mg values of + 0.4‰), consistent with previous observations that lighter Mg isotopes are preferentially released to water during silicate weathering. Dissolution of the carbonate mineral ankerite, depleted in the shallow soils but present in bedrock at greater depths, produced higher Mg2 + concentrations but lower δ26Mg values (− 1.1‰) in groundwater, ~ 1.5‰ lighter than the bedrock. δ26Mg values (+ 0.2‰ to + 0.4‰) of soil samples on the planar hillslope are either similar or up to ~ 0.2‰ lighter than the bedrock. Hence a heavy Mg isotope reservoir – complementary to the lighter Mg isotopes in soil pore water and stream water – is missing from the residual soils on the hillslope. In addition, soil samples show a slight but systematic decreasing trend in δ26Mg values with increasing weathering duration towards the surface. We suggest that the accumulation of light Mg isotopes in surface soils at Shale Hills is due to a combined effect of i) sequestration of isotopically light Mg from soil water during clay dissolution–precipitation reactions; and ii) loss of isotopically heavy particulate Mg in micron-sized particles from the hillslope as suspended sediments. This latter mechanism is somewhat surprising in that most researchers do not consider physical removal or particles to be a likely mechanism of isotopic fractionation. Stream sediments (δ26Mg values of + 0.3‰ to + 0.5‰) accumulated on the valley floor are ~ 0.2‰ heavier than the bedrock, and are thus consistent with that mobile particulates are the heavy Mg isotope reservoir. Our study provides the first field evidence that changes in clay mineralogy lead to accumulation of lighter Mg isotopes in residual bulk soils. This example also demonstrates that transport of isotopically distinct fine particles from clay-rich systems could be a new and important mechanism to drive the Mg isotope compositions of silicate weathering residuals. This mechanism drives fractionation in an opposite direction as might be expected from previous studies, i.e. residual soils are driven to lighter Mg values and sediments become isotopically heavier." @default.
- W2015191519 created "2016-06-24" @default.
- W2015191519 creator A5019539210 @default.
- W2015191519 creator A5024774960 @default.
- W2015191519 creator A5030240595 @default.
- W2015191519 creator A5040516104 @default.
- W2015191519 creator A5057024119 @default.
- W2015191519 creator A5073697986 @default.
- W2015191519 creator A5090439825 @default.
- W2015191519 date "2015-03-01" @default.
- W2015191519 modified "2023-10-16" @default.
- W2015191519 title "Magnesium isotope fractionation during shale weathering in the Shale Hills Critical Zone Observatory: Accumulation of light Mg isotopes in soils by clay mineral transformation" @default.
- W2015191519 cites W1508635819 @default.
- W2015191519 cites W1526090647 @default.
- W2015191519 cites W1618006206 @default.
- W2015191519 cites W1817088834 @default.
- W2015191519 cites W1858659914 @default.
- W2015191519 cites W1871614529 @default.
- W2015191519 cites W1912054937 @default.
- W2015191519 cites W1965439550 @default.
- W2015191519 cites W1968555610 @default.
- W2015191519 cites W1968816605 @default.
- W2015191519 cites W1968988987 @default.
- W2015191519 cites W1974914902 @default.
- W2015191519 cites W1977385961 @default.
- W2015191519 cites W1978444253 @default.
- W2015191519 cites W1982122406 @default.
- W2015191519 cites W1986265239 @default.
- W2015191519 cites W1986619898 @default.
- W2015191519 cites W2003576163 @default.
- W2015191519 cites W2004640471 @default.
- W2015191519 cites W2005682964 @default.
- W2015191519 cites W2006081057 @default.
- W2015191519 cites W2011751579 @default.
- W2015191519 cites W2011955045 @default.
- W2015191519 cites W2012429378 @default.
- W2015191519 cites W2015632520 @default.
- W2015191519 cites W2017225534 @default.
- W2015191519 cites W2020028063 @default.
- W2015191519 cites W2020228038 @default.
- W2015191519 cites W2023652180 @default.
- W2015191519 cites W2023959580 @default.
- W2015191519 cites W2024693414 @default.
- W2015191519 cites W2032788341 @default.
- W2015191519 cites W2034578691 @default.
- W2015191519 cites W2035770736 @default.
- W2015191519 cites W2036175654 @default.
- W2015191519 cites W2042358706 @default.
- W2015191519 cites W2042512309 @default.
- W2015191519 cites W2042596988 @default.
- W2015191519 cites W2047197891 @default.
- W2015191519 cites W2047850128 @default.
- W2015191519 cites W2050042705 @default.
- W2015191519 cites W2055012963 @default.
- W2015191519 cites W2059429327 @default.
- W2015191519 cites W2059675029 @default.
- W2015191519 cites W2062712059 @default.
- W2015191519 cites W2063685903 @default.
- W2015191519 cites W2068448933 @default.
- W2015191519 cites W2071390384 @default.
- W2015191519 cites W2072896153 @default.
- W2015191519 cites W2078764552 @default.
- W2015191519 cites W2084849445 @default.
- W2015191519 cites W2094560143 @default.
- W2015191519 cites W2124063354 @default.
- W2015191519 cites W2125927824 @default.
- W2015191519 cites W2127774239 @default.
- W2015191519 cites W2128239598 @default.
- W2015191519 cites W2128419417 @default.
- W2015191519 cites W2131622022 @default.
- W2015191519 cites W2131921670 @default.
- W2015191519 cites W2141014038 @default.
- W2015191519 cites W2143262029 @default.
- W2015191519 cites W2143406107 @default.
- W2015191519 cites W2152967648 @default.
- W2015191519 cites W2160321193 @default.
- W2015191519 cites W2163604963 @default.
- W2015191519 cites W2164163223 @default.
- W2015191519 cites W2164166558 @default.
- W2015191519 cites W2166527330 @default.
- W2015191519 cites W4241387305 @default.
- W2015191519 doi "https://doi.org/10.1016/j.chemgeo.2015.01.010" @default.
- W2015191519 hasPublicationYear "2015" @default.
- W2015191519 type Work @default.
- W2015191519 sameAs 2015191519 @default.
- W2015191519 citedByCount "67" @default.
- W2015191519 countsByYear W20151915192015 @default.
- W2015191519 countsByYear W20151915192016 @default.
- W2015191519 countsByYear W20151915192017 @default.
- W2015191519 countsByYear W20151915192018 @default.
- W2015191519 countsByYear W20151915192019 @default.
- W2015191519 countsByYear W20151915192020 @default.
- W2015191519 countsByYear W20151915192021 @default.
- W2015191519 countsByYear W20151915192022 @default.
- W2015191519 countsByYear W20151915192023 @default.
- W2015191519 crossrefType "journal-article" @default.
- W2015191519 hasAuthorship W2015191519A5019539210 @default.
- W2015191519 hasAuthorship W2015191519A5024774960 @default.