Matches in SemOpenAlex for { <https://semopenalex.org/work/W2015220059> ?p ?o ?g. }
- W2015220059 endingPage "238" @default.
- W2015220059 startingPage "217" @default.
- W2015220059 abstract "The human heart in the fasting state extracts FFA, glucose, lactate, pyruvate, and ketone bodies from the systemic circulation. Of these substrates, FFA utilization accounts for the greater part of oxygen consumption and energy production. The oxidative use of lipid (FFA) and carbohydrate (glucose and lactate) fuels is reciprocally regulated through the operation of Randle's cycle. Feeding, by increasing both insulin and glucose concentration, shifts myocardial metabolism towards preferential carbohydrate usage, both for oxidative energy generation and for glycogen synthesis. During conditions of reduced oxygen supply, the oxidation of all substrates is decreased while anaerobic metabolism is activated. In patients with coronary artery disease and stable angina pectoris, lactate release in the CS can be demonstrated during pacing stress. However, this occurs in only 50% of patients, and no relationship can be demonstrated between lactate production and the severity of ischemia. In patients with chronic angina, a significant release of alanine in the CS and an increased myocardial uptake of glutamate could be demonstrated at rest and following pacing. These two phenomena result from increased transamination of excess pyruvate to alanine with glutamate serving as NH2 donor. In addition, release of citrate (a known inhibitor of glycolysis) in the CS can be demonstrated following pacing in patients with stable angina. The introduction of PET has made it possible to study regional myocardial perfusion and metabolism in humans noninvasively. Two basically different patterns of myocardial glucose utilization have been observed in patients with coronary artery disease studied at rest using 18F-flurodeoxyglucose. In patients with stable angina on exercise but studied at rest, regional myocar- dial glucose utilization was homogeneously low and comparable with that of a group of normals. In contrast, in patients with unstable angina, myocardial glucose utilization at rest was increased even in the absence of symptoms and ECG signs of acute ischemia. In patients with stable angina, a prolonged increase in glucose uptake could be demonstrated in the post-ischemic myocardium in the absence of perfusion abnormalities, and a state of chronic metabolic ischemia is proposed. PET imaging has also allowed prospective differentiation between viable and nonviable segmental function in patients with recent myocardial infarction and in those undergoing coronary artery surgery; in both cases viable segments have relatively maintained glucose uptakes, whereas nonviable segments have depressed glucose uptakes." @default.
- W2015220059 created "2016-06-24" @default.
- W2015220059 creator A5019957071 @default.
- W2015220059 creator A5071728879 @default.
- W2015220059 creator A5090207956 @default.
- W2015220059 date "1989-11-01" @default.
- W2015220059 modified "2023-10-06" @default.
- W2015220059 title "Myocardial metabolism in ischemic heart disease: basic principles and application to imaging by positron emission tomography" @default.
- W2015220059 cites W133559667 @default.
- W2015220059 cites W1496234079 @default.
- W2015220059 cites W1508773173 @default.
- W2015220059 cites W153130060 @default.
- W2015220059 cites W1565056239 @default.
- W2015220059 cites W1592623275 @default.
- W2015220059 cites W194646164 @default.
- W2015220059 cites W1969743240 @default.
- W2015220059 cites W1973978261 @default.
- W2015220059 cites W1974146330 @default.
- W2015220059 cites W1975033715 @default.
- W2015220059 cites W1975524784 @default.
- W2015220059 cites W1977393242 @default.
- W2015220059 cites W1986537961 @default.
- W2015220059 cites W1991648697 @default.
- W2015220059 cites W1998542483 @default.
- W2015220059 cites W1999793645 @default.
- W2015220059 cites W2002007326 @default.
- W2015220059 cites W2003081449 @default.
- W2015220059 cites W2003676736 @default.
- W2015220059 cites W2004578917 @default.
- W2015220059 cites W2005970179 @default.
- W2015220059 cites W2009910202 @default.
- W2015220059 cites W2011651885 @default.
- W2015220059 cites W2012898950 @default.
- W2015220059 cites W2013979638 @default.
- W2015220059 cites W2014230613 @default.
- W2015220059 cites W2014912400 @default.
- W2015220059 cites W2018895678 @default.
- W2015220059 cites W2020022972 @default.
- W2015220059 cites W2020971669 @default.
- W2015220059 cites W2024488165 @default.
- W2015220059 cites W2027325058 @default.
- W2015220059 cites W2033867914 @default.
- W2015220059 cites W2047182448 @default.
- W2015220059 cites W2048361334 @default.
- W2015220059 cites W2048383261 @default.
- W2015220059 cites W2054754621 @default.
- W2015220059 cites W2071754984 @default.
- W2015220059 cites W2072104819 @default.
- W2015220059 cites W2088274763 @default.
- W2015220059 cites W2093022081 @default.
- W2015220059 cites W2094321468 @default.
- W2015220059 cites W2104966285 @default.
- W2015220059 cites W2105694339 @default.
- W2015220059 cites W2108910928 @default.
- W2015220059 cites W2120138860 @default.
- W2015220059 cites W2120307471 @default.
- W2015220059 cites W2122726244 @default.
- W2015220059 cites W2130200187 @default.
- W2015220059 cites W2140299723 @default.
- W2015220059 cites W2150973832 @default.
- W2015220059 cites W2288217494 @default.
- W2015220059 cites W2398652950 @default.
- W2015220059 cites W2408356017 @default.
- W2015220059 cites W2417225653 @default.
- W2015220059 cites W2614648545 @default.
- W2015220059 cites W3025642248 @default.
- W2015220059 cites W4248811413 @default.
- W2015220059 doi "https://doi.org/10.1016/0033-0620(89)90027-3" @default.
- W2015220059 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/2682779" @default.
- W2015220059 hasPublicationYear "1989" @default.
- W2015220059 type Work @default.
- W2015220059 sameAs 2015220059 @default.
- W2015220059 citedByCount "259" @default.
- W2015220059 countsByYear W20152200592012 @default.
- W2015220059 countsByYear W20152200592013 @default.
- W2015220059 countsByYear W20152200592014 @default.
- W2015220059 countsByYear W20152200592015 @default.
- W2015220059 countsByYear W20152200592016 @default.
- W2015220059 countsByYear W20152200592017 @default.
- W2015220059 countsByYear W20152200592018 @default.
- W2015220059 countsByYear W20152200592019 @default.
- W2015220059 countsByYear W20152200592020 @default.
- W2015220059 countsByYear W20152200592021 @default.
- W2015220059 countsByYear W20152200592022 @default.
- W2015220059 countsByYear W20152200592023 @default.
- W2015220059 crossrefType "journal-article" @default.
- W2015220059 hasAuthorship W2015220059A5019957071 @default.
- W2015220059 hasAuthorship W2015220059A5071728879 @default.
- W2015220059 hasAuthorship W2015220059A5090207956 @default.
- W2015220059 hasConcept C126322002 @default.
- W2015220059 hasConcept C134018914 @default.
- W2015220059 hasConcept C146957229 @default.
- W2015220059 hasConcept C164705383 @default.
- W2015220059 hasConcept C17093226 @default.
- W2015220059 hasConcept C20251656 @default.
- W2015220059 hasConcept C2777499176 @default.
- W2015220059 hasConcept C2777866211 @default.
- W2015220059 hasConcept C2778213512 @default.