Matches in SemOpenAlex for { <https://semopenalex.org/work/W2015223144> ?p ?o ?g. }
- W2015223144 endingPage "1605" @default.
- W2015223144 startingPage "1596" @default.
- W2015223144 abstract "BACKGROUND Accurate estimation of outcome in patients with malignant disease is an important component of the clinical decision-making process. To create a comprehensive prognostic model for esophageal carcinoma, artificial neural networks (ANNs) were applied to the analysis of a range of patient-related and tumor-related variables. METHODS Clinical and pathologic data were collected from 418 patients with esophageal carcinoma who underwent resection with curative intent. A data base that included 199 variables was constructed. Using ANN-based sensitivity analysis, the optimal combination of variables was determined to allow creation of a survival prediction model. The accuracy (area under the receiver operator characteristic curve [AUR]) of this ANN model subsequently was compared with the accuracy of the conventional statistical technique: linear discriminant analysis (LDA). RESULTS The optimal ANN models for predicting outcomes at 1 year and 5 years consisted of 65 variables (AUR = 0.883) and 60 variables (AUR = 0.884), respectively. These filtered, optimal data sets were significantly more accurate (P < 0.0001) than the original data set of 199 variables. The majority of ANN models demonstrated improved accuracy compared with corresponding LDA models for 1-year and 5-year survival predictions. Furthermore, ANN models based on the optimal data set were superior predictors of survival compared with a model based solely on TNM staging criteria (P < 0.0001). CONCLUSIONS ANNs can be used to construct a highly accurate prognostic model for patients with esophageal carcinoma. Sensitivity analysis based on ANNs is a powerful tool for seeking optimal data sets. Cancer 2005. © 2005 American Cancer Society." @default.
- W2015223144 created "2016-06-24" @default.
- W2015223144 creator A5005720957 @default.
- W2015223144 creator A5019685966 @default.
- W2015223144 creator A5025906534 @default.
- W2015223144 creator A5033593359 @default.
- W2015223144 creator A5033696694 @default.
- W2015223144 creator A5053191594 @default.
- W2015223144 creator A5068261770 @default.
- W2015223144 creator A5072294943 @default.
- W2015223144 creator A5086948389 @default.
- W2015223144 creator A5089477844 @default.
- W2015223144 date "2005-01-01" @default.
- W2015223144 modified "2023-10-15" @default.
- W2015223144 title "Prediction of survival in patients with esophageal carcinoma using artificial neural networks" @default.
- W2015223144 cites W1498436455 @default.
- W2015223144 cites W1973734062 @default.
- W2015223144 cites W1979315427 @default.
- W2015223144 cites W1980088580 @default.
- W2015223144 cites W1980574258 @default.
- W2015223144 cites W1988034908 @default.
- W2015223144 cites W1996469277 @default.
- W2015223144 cites W2001146267 @default.
- W2015223144 cites W2006590541 @default.
- W2015223144 cites W2036991741 @default.
- W2015223144 cites W2038252730 @default.
- W2015223144 cites W2045314288 @default.
- W2015223144 cites W2048304946 @default.
- W2015223144 cites W2056446896 @default.
- W2015223144 cites W2059072983 @default.
- W2015223144 cites W2060962932 @default.
- W2015223144 cites W2063907485 @default.
- W2015223144 cites W2065216271 @default.
- W2015223144 cites W2070069664 @default.
- W2015223144 cites W2074229843 @default.
- W2015223144 cites W2077394807 @default.
- W2015223144 cites W2092732346 @default.
- W2015223144 cites W2108673310 @default.
- W2015223144 cites W2118203814 @default.
- W2015223144 cites W2128718068 @default.
- W2015223144 cites W2140218006 @default.
- W2015223144 cites W2157825442 @default.
- W2015223144 cites W2168165734 @default.
- W2015223144 cites W2255534870 @default.
- W2015223144 cites W2325246949 @default.
- W2015223144 cites W2328176404 @default.
- W2015223144 cites W4249028950 @default.
- W2015223144 cites W4293241248 @default.
- W2015223144 cites W4366064733 @default.
- W2015223144 cites W4376595336 @default.
- W2015223144 doi "https://doi.org/10.1002/cncr.20938" @default.
- W2015223144 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/15751017" @default.
- W2015223144 hasPublicationYear "2005" @default.
- W2015223144 type Work @default.
- W2015223144 sameAs 2015223144 @default.
- W2015223144 citedByCount "74" @default.
- W2015223144 countsByYear W20152231442012 @default.
- W2015223144 countsByYear W20152231442013 @default.
- W2015223144 countsByYear W20152231442014 @default.
- W2015223144 countsByYear W20152231442015 @default.
- W2015223144 countsByYear W20152231442016 @default.
- W2015223144 countsByYear W20152231442017 @default.
- W2015223144 countsByYear W20152231442018 @default.
- W2015223144 countsByYear W20152231442019 @default.
- W2015223144 countsByYear W20152231442020 @default.
- W2015223144 countsByYear W20152231442021 @default.
- W2015223144 countsByYear W20152231442022 @default.
- W2015223144 countsByYear W20152231442023 @default.
- W2015223144 crossrefType "journal-article" @default.
- W2015223144 hasAuthorship W2015223144A5005720957 @default.
- W2015223144 hasAuthorship W2015223144A5019685966 @default.
- W2015223144 hasAuthorship W2015223144A5025906534 @default.
- W2015223144 hasAuthorship W2015223144A5033593359 @default.
- W2015223144 hasAuthorship W2015223144A5033696694 @default.
- W2015223144 hasAuthorship W2015223144A5053191594 @default.
- W2015223144 hasAuthorship W2015223144A5068261770 @default.
- W2015223144 hasAuthorship W2015223144A5072294943 @default.
- W2015223144 hasAuthorship W2015223144A5086948389 @default.
- W2015223144 hasAuthorship W2015223144A5089477844 @default.
- W2015223144 hasBestOaLocation W20152231441 @default.
- W2015223144 hasConcept C10515644 @default.
- W2015223144 hasConcept C105795698 @default.
- W2015223144 hasConcept C121608353 @default.
- W2015223144 hasConcept C126322002 @default.
- W2015223144 hasConcept C143998085 @default.
- W2015223144 hasConcept C154945302 @default.
- W2015223144 hasConcept C2777546739 @default.
- W2015223144 hasConcept C2779742542 @default.
- W2015223144 hasConcept C33923547 @default.
- W2015223144 hasConcept C41008148 @default.
- W2015223144 hasConcept C50644808 @default.
- W2015223144 hasConcept C58471807 @default.
- W2015223144 hasConcept C58489278 @default.
- W2015223144 hasConcept C69738355 @default.
- W2015223144 hasConcept C71924100 @default.
- W2015223144 hasConceptScore W2015223144C10515644 @default.
- W2015223144 hasConceptScore W2015223144C105795698 @default.
- W2015223144 hasConceptScore W2015223144C121608353 @default.