Matches in SemOpenAlex for { <https://semopenalex.org/work/W2015223326> ?p ?o ?g. }
- W2015223326 endingPage "5380" @default.
- W2015223326 startingPage "5363" @default.
- W2015223326 abstract "Based on experiments and numerical simulations, a study is carried out pertaining to the conversion of dose-to-graphite to dose-to-water in a carbon ion beam. This conversion is needed to establish graphite calorimeters as primary standards of absorbed dose in these beams. It is governed by the water-to-graphite mass collision stopping power ratio and fluence correction factors, which depend on the particle fluence distributions in each of the two media. The paper focuses on the experimental and numerical determination of this fluence correction factor for an 80 MeV/A carbon ion beam. Measurements have been performed in the nuclear physics laboratory INFN-LNS in Catania (Sicily, Italy). The numerical simulations have been made with a Geant4 Monte Carlo code through the GATE simulation platform. The experimental data are in good agreement with the simulated results for the fluence correction factors and are found to be close to unity. The experimental values increase with depth reaching 1.010 before the Bragg peak region. They have been determined with an uncertainty of 0.25%. Different numerical results are obtained depending on the level of approximation made in calculating the fluence correction factors. When considering carbon ions only, the difference between measured and calculated values is maximal just before the Bragg peak, but its value is less than 1.005. The numerical value is close to unity at the surface and increases to 1.005 near the Bragg peak. When the fluence of all charged particles is considered, the fluence correction factors are lower than unity at the surface and increase with depth up to 1.025 before the Bragg peak. Besides carbon ions, secondary particles created due to nuclear interactions have to be included in the analysis: boron ions ((10)B and (11)B), beryllium ions ((7)Be), alpha particles and protons. At the conclusion of this work, we have the conversion of dose-to-graphite to dose-to-water to apply to the response of a graphite calorimeter in an 80 MeV/A carbon ion beam. This conversion consists of the product of two contributions: the water-to-graphite electronic mass collision stopping power ratio, which is equal to 1.115, and the fluence correction factor which varies linearly with depth, as k(fl, all) = 0.9995 + 0.0048(zw-eq). The latter has been determined on the basis of experiments and numerical simulations." @default.
- W2015223326 created "2016-06-24" @default.
- W2015223326 creator A5001834581 @default.
- W2015223326 creator A5014376750 @default.
- W2015223326 creator A5025117584 @default.
- W2015223326 creator A5032607786 @default.
- W2015223326 creator A5034192733 @default.
- W2015223326 creator A5046061409 @default.
- W2015223326 creator A5058706916 @default.
- W2015223326 creator A5073799196 @default.
- W2015223326 creator A5086202004 @default.
- W2015223326 creator A5088280206 @default.
- W2015223326 date "2013-07-23" @default.
- W2015223326 modified "2023-10-14" @default.
- W2015223326 title "Conversion from dose-to-graphite to dose-to-water in an 80 MeV/A carbon ion beam" @default.
- W2015223326 cites W1965040303 @default.
- W2015223326 cites W1965289568 @default.
- W2015223326 cites W1965594503 @default.
- W2015223326 cites W1965962407 @default.
- W2015223326 cites W1969327310 @default.
- W2015223326 cites W1976111386 @default.
- W2015223326 cites W1990973023 @default.
- W2015223326 cites W1991452488 @default.
- W2015223326 cites W1993634462 @default.
- W2015223326 cites W1997446661 @default.
- W2015223326 cites W1998234533 @default.
- W2015223326 cites W2005653676 @default.
- W2015223326 cites W2008230844 @default.
- W2015223326 cites W2024576283 @default.
- W2015223326 cites W2031586753 @default.
- W2015223326 cites W2045682106 @default.
- W2015223326 cites W2052260846 @default.
- W2015223326 cites W2055584193 @default.
- W2015223326 cites W2071170340 @default.
- W2015223326 cites W2072999172 @default.
- W2015223326 cites W2078251262 @default.
- W2015223326 cites W2080054127 @default.
- W2015223326 cites W2080545958 @default.
- W2015223326 cites W2098889765 @default.
- W2015223326 cites W2100922813 @default.
- W2015223326 cites W2116085429 @default.
- W2015223326 cites W2128158076 @default.
- W2015223326 cites W2128881154 @default.
- W2015223326 cites W2138884296 @default.
- W2015223326 cites W2140056666 @default.
- W2015223326 cites W2165767756 @default.
- W2015223326 cites W2242639486 @default.
- W2015223326 cites W2309267196 @default.
- W2015223326 doi "https://doi.org/10.1088/0031-9155/58/16/5363" @default.
- W2015223326 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23877166" @default.
- W2015223326 hasPublicationYear "2013" @default.
- W2015223326 type Work @default.
- W2015223326 sameAs 2015223326 @default.
- W2015223326 citedByCount "8" @default.
- W2015223326 countsByYear W20152233262013 @default.
- W2015223326 countsByYear W20152233262014 @default.
- W2015223326 countsByYear W20152233262016 @default.
- W2015223326 countsByYear W20152233262017 @default.
- W2015223326 countsByYear W20152233262019 @default.
- W2015223326 countsByYear W20152233262020 @default.
- W2015223326 countsByYear W20152233262021 @default.
- W2015223326 crossrefType "journal-article" @default.
- W2015223326 hasAuthorship W2015223326A5001834581 @default.
- W2015223326 hasAuthorship W2015223326A5014376750 @default.
- W2015223326 hasAuthorship W2015223326A5025117584 @default.
- W2015223326 hasAuthorship W2015223326A5032607786 @default.
- W2015223326 hasAuthorship W2015223326A5034192733 @default.
- W2015223326 hasAuthorship W2015223326A5046061409 @default.
- W2015223326 hasAuthorship W2015223326A5058706916 @default.
- W2015223326 hasAuthorship W2015223326A5073799196 @default.
- W2015223326 hasAuthorship W2015223326A5086202004 @default.
- W2015223326 hasAuthorship W2015223326A5088280206 @default.
- W2015223326 hasConcept C104779481 @default.
- W2015223326 hasConcept C105795698 @default.
- W2015223326 hasConcept C111337013 @default.
- W2015223326 hasConcept C120665830 @default.
- W2015223326 hasConcept C121332964 @default.
- W2015223326 hasConcept C140205800 @default.
- W2015223326 hasConcept C145148216 @default.
- W2015223326 hasConcept C146904657 @default.
- W2015223326 hasConcept C159985019 @default.
- W2015223326 hasConcept C168834538 @default.
- W2015223326 hasConcept C184779094 @default.
- W2015223326 hasConcept C185544564 @default.
- W2015223326 hasConcept C192562407 @default.
- W2015223326 hasConcept C19499675 @default.
- W2015223326 hasConcept C22078206 @default.
- W2015223326 hasConcept C2779698641 @default.
- W2015223326 hasConcept C2780944729 @default.
- W2015223326 hasConcept C30475298 @default.
- W2015223326 hasConcept C33923547 @default.
- W2015223326 hasConcept C62520636 @default.
- W2015223326 hasConceptScore W2015223326C104779481 @default.
- W2015223326 hasConceptScore W2015223326C105795698 @default.
- W2015223326 hasConceptScore W2015223326C111337013 @default.
- W2015223326 hasConceptScore W2015223326C120665830 @default.
- W2015223326 hasConceptScore W2015223326C121332964 @default.
- W2015223326 hasConceptScore W2015223326C140205800 @default.