Matches in SemOpenAlex for { <https://semopenalex.org/work/W2015246703> ?p ?o ?g. }
- W2015246703 endingPage "7002" @default.
- W2015246703 startingPage "6985" @default.
- W2015246703 abstract "A common attribute of capturing schemes used to find approximate solutions to the Euler equations is a sub-linear rate of convergence with respect to mesh resolution. Purely nonlinear jumps, such as shock waves produce a first-order convergence rate, but linearly degenerate discontinuous waves, where present, produce sub-linear convergence rates which eventually dominate the global rate of convergence. The classical explanation for this phenomenon investigates the behavior of the exact solution to the numerical method in combination with the finite error terms, often referred to as the modified equation. For a first-order method, the modified equation produces the hyperbolic evolution equation with second-order diffusive terms. In the frame of reference of the traveling wave, the solution of a discontinuous wave consists of a diffusive layer that grows with a rate of t1/2, yielding a convergence rate of 1/2. Self-similar heuristics for higher-order discretizations produce a growth rate for the layer thickness of Δt1/(p+1) which yields an estimate for the convergence rate as p/(p + 1) where p is the order of the discretization. In this paper we show that this estimated convergence rate can be derived with greater rigor for both dissipative and dispersive forms of the discrete error. In particular, the form of the analytical solution for linear modified equations can be solved exactly. These estimates and forms for the error are confirmed in a variety of demonstrations ranging from simple linear waves to multidimensional solutions of the Euler equations." @default.
- W2015246703 created "2016-06-24" @default.
- W2015246703 creator A5006563491 @default.
- W2015246703 creator A5007701222 @default.
- W2015246703 creator A5039186588 @default.
- W2015246703 date "2008-07-01" @default.
- W2015246703 modified "2023-10-05" @default.
- W2015246703 title "On sub-linear convergence for linearly degenerate waves in capturing schemes" @default.
- W2015246703 cites W1975059575 @default.
- W2015246703 cites W1975706278 @default.
- W2015246703 cites W1976617141 @default.
- W2015246703 cites W1982563912 @default.
- W2015246703 cites W1998871982 @default.
- W2015246703 cites W1999399767 @default.
- W2015246703 cites W2001981788 @default.
- W2015246703 cites W2006275189 @default.
- W2015246703 cites W2020168202 @default.
- W2015246703 cites W2043057066 @default.
- W2015246703 cites W2054662916 @default.
- W2015246703 cites W2075319026 @default.
- W2015246703 cites W2092311642 @default.
- W2015246703 cites W2103191952 @default.
- W2015246703 cites W2108182238 @default.
- W2015246703 cites W2123322808 @default.
- W2015246703 cites W2152830908 @default.
- W2015246703 cites W2749486094 @default.
- W2015246703 cites W4250289804 @default.
- W2015246703 cites W4382891143 @default.
- W2015246703 doi "https://doi.org/10.1016/j.jcp.2008.04.002" @default.
- W2015246703 hasPublicationYear "2008" @default.
- W2015246703 type Work @default.
- W2015246703 sameAs 2015246703 @default.
- W2015246703 citedByCount "97" @default.
- W2015246703 countsByYear W20152467032012 @default.
- W2015246703 countsByYear W20152467032013 @default.
- W2015246703 countsByYear W20152467032014 @default.
- W2015246703 countsByYear W20152467032015 @default.
- W2015246703 countsByYear W20152467032016 @default.
- W2015246703 countsByYear W20152467032017 @default.
- W2015246703 countsByYear W20152467032018 @default.
- W2015246703 countsByYear W20152467032019 @default.
- W2015246703 countsByYear W20152467032020 @default.
- W2015246703 countsByYear W20152467032021 @default.
- W2015246703 countsByYear W20152467032022 @default.
- W2015246703 countsByYear W20152467032023 @default.
- W2015246703 crossrefType "journal-article" @default.
- W2015246703 hasAuthorship W2015246703A5006563491 @default.
- W2015246703 hasAuthorship W2015246703A5007701222 @default.
- W2015246703 hasAuthorship W2015246703A5039186588 @default.
- W2015246703 hasBestOaLocation W20152467032 @default.
- W2015246703 hasConcept C119599485 @default.
- W2015246703 hasConcept C121332964 @default.
- W2015246703 hasConcept C127162648 @default.
- W2015246703 hasConcept C127413603 @default.
- W2015246703 hasConcept C134306372 @default.
- W2015246703 hasConcept C158622935 @default.
- W2015246703 hasConcept C162324750 @default.
- W2015246703 hasConcept C2777303404 @default.
- W2015246703 hasConcept C28826006 @default.
- W2015246703 hasConcept C33923547 @default.
- W2015246703 hasConcept C38409319 @default.
- W2015246703 hasConcept C50522688 @default.
- W2015246703 hasConcept C57869625 @default.
- W2015246703 hasConcept C62520636 @default.
- W2015246703 hasConcept C72319582 @default.
- W2015246703 hasConcept C73000952 @default.
- W2015246703 hasConcept C99692599 @default.
- W2015246703 hasConceptScore W2015246703C119599485 @default.
- W2015246703 hasConceptScore W2015246703C121332964 @default.
- W2015246703 hasConceptScore W2015246703C127162648 @default.
- W2015246703 hasConceptScore W2015246703C127413603 @default.
- W2015246703 hasConceptScore W2015246703C134306372 @default.
- W2015246703 hasConceptScore W2015246703C158622935 @default.
- W2015246703 hasConceptScore W2015246703C162324750 @default.
- W2015246703 hasConceptScore W2015246703C2777303404 @default.
- W2015246703 hasConceptScore W2015246703C28826006 @default.
- W2015246703 hasConceptScore W2015246703C33923547 @default.
- W2015246703 hasConceptScore W2015246703C38409319 @default.
- W2015246703 hasConceptScore W2015246703C50522688 @default.
- W2015246703 hasConceptScore W2015246703C57869625 @default.
- W2015246703 hasConceptScore W2015246703C62520636 @default.
- W2015246703 hasConceptScore W2015246703C72319582 @default.
- W2015246703 hasConceptScore W2015246703C73000952 @default.
- W2015246703 hasConceptScore W2015246703C99692599 @default.
- W2015246703 hasIssue "14" @default.
- W2015246703 hasLocation W20152467031 @default.
- W2015246703 hasLocation W20152467032 @default.
- W2015246703 hasLocation W20152467033 @default.
- W2015246703 hasOpenAccess W2015246703 @default.
- W2015246703 hasPrimaryLocation W20152467031 @default.
- W2015246703 hasRelatedWork W1697484951 @default.
- W2015246703 hasRelatedWork W1975375867 @default.
- W2015246703 hasRelatedWork W1992244398 @default.
- W2015246703 hasRelatedWork W2036915488 @default.
- W2015246703 hasRelatedWork W2362641799 @default.
- W2015246703 hasRelatedWork W3166395799 @default.
- W2015246703 hasRelatedWork W4226238329 @default.
- W2015246703 hasRelatedWork W4297084911 @default.