Matches in SemOpenAlex for { <https://semopenalex.org/work/W2015265162> ?p ?o ?g. }
- W2015265162 endingPage "582" @default.
- W2015265162 startingPage "568" @default.
- W2015265162 abstract "Optimization of neural network topology, weights and neuron transfer functions for given data set and problem is not an easy task. In this article, we focus primarily on building optimal feed-forward neural network classifier for i.i.d. data sets. We apply meta-learning principles to the neural network structure and function optimization. We show that diversity promotion, ensembling, self-organization and induction are beneficial for the problem. We combine several different neuron types trained by various optimization algorithms to build a supervised feed-forward neural network called Group of Adaptive Models Evolution (GAME). The approach was tested on a large number of benchmark data sets. The experiments show that the combination of different optimization algorithms in the network is the best choice when the performance is averaged over several real-world problems." @default.
- W2015265162 created "2016-06-24" @default.
- W2015265162 creator A5035026045 @default.
- W2015265162 creator A5045903321 @default.
- W2015265162 creator A5049289726 @default.
- W2015265162 creator A5064440553 @default.
- W2015265162 creator A5068199087 @default.
- W2015265162 creator A5079714124 @default.
- W2015265162 date "2010-05-01" @default.
- W2015265162 modified "2023-09-26" @default.
- W2015265162 title "Meta-learning approach to neural network optimization" @default.
- W2015265162 cites W1486613728 @default.
- W2015265162 cites W1491990044 @default.
- W2015265162 cites W1537044124 @default.
- W2015265162 cites W1595159159 @default.
- W2015265162 cites W1708394971 @default.
- W2015265162 cites W1888884532 @default.
- W2015265162 cites W1987151133 @default.
- W2015265162 cites W2009969871 @default.
- W2015265162 cites W2014239346 @default.
- W2015265162 cites W2020399841 @default.
- W2015265162 cites W2028569720 @default.
- W2015265162 cites W2031173026 @default.
- W2015265162 cites W2043181951 @default.
- W2015265162 cites W2084323233 @default.
- W2015265162 cites W2098677716 @default.
- W2015265162 cites W2102184039 @default.
- W2015265162 cites W2111935653 @default.
- W2015265162 cites W2112036188 @default.
- W2015265162 cites W2117539519 @default.
- W2015265162 cites W2131960614 @default.
- W2015265162 cites W2138784882 @default.
- W2015265162 cites W2139446275 @default.
- W2015265162 cites W2141497252 @default.
- W2015265162 cites W2143979843 @default.
- W2015265162 cites W2150197722 @default.
- W2015265162 cites W2150913357 @default.
- W2015265162 cites W2151554678 @default.
- W2015265162 cites W2154047522 @default.
- W2015265162 cites W2161393961 @default.
- W2015265162 cites W2171240210 @default.
- W2015265162 cites W28412257 @default.
- W2015265162 cites W2912573428 @default.
- W2015265162 cites W3004732066 @default.
- W2015265162 cites W3103809389 @default.
- W2015265162 cites W4212883601 @default.
- W2015265162 doi "https://doi.org/10.1016/j.neunet.2010.02.003" @default.
- W2015265162 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/20227243" @default.
- W2015265162 hasPublicationYear "2010" @default.
- W2015265162 type Work @default.
- W2015265162 sameAs 2015265162 @default.
- W2015265162 citedByCount "40" @default.
- W2015265162 countsByYear W20152651622012 @default.
- W2015265162 countsByYear W20152651622013 @default.
- W2015265162 countsByYear W20152651622014 @default.
- W2015265162 countsByYear W20152651622016 @default.
- W2015265162 countsByYear W20152651622017 @default.
- W2015265162 countsByYear W20152651622020 @default.
- W2015265162 countsByYear W20152651622021 @default.
- W2015265162 countsByYear W20152651622022 @default.
- W2015265162 countsByYear W20152651622023 @default.
- W2015265162 crossrefType "journal-article" @default.
- W2015265162 hasAuthorship W2015265162A5035026045 @default.
- W2015265162 hasAuthorship W2015265162A5045903321 @default.
- W2015265162 hasAuthorship W2015265162A5049289726 @default.
- W2015265162 hasAuthorship W2015265162A5064440553 @default.
- W2015265162 hasAuthorship W2015265162A5068199087 @default.
- W2015265162 hasAuthorship W2015265162A5079714124 @default.
- W2015265162 hasConcept C11413529 @default.
- W2015265162 hasConcept C119857082 @default.
- W2015265162 hasConcept C137836250 @default.
- W2015265162 hasConcept C154945302 @default.
- W2015265162 hasConcept C175202392 @default.
- W2015265162 hasConcept C41008148 @default.
- W2015265162 hasConcept C50644808 @default.
- W2015265162 hasConcept C86582703 @default.
- W2015265162 hasConcept C95623464 @default.
- W2015265162 hasConceptScore W2015265162C11413529 @default.
- W2015265162 hasConceptScore W2015265162C119857082 @default.
- W2015265162 hasConceptScore W2015265162C137836250 @default.
- W2015265162 hasConceptScore W2015265162C154945302 @default.
- W2015265162 hasConceptScore W2015265162C175202392 @default.
- W2015265162 hasConceptScore W2015265162C41008148 @default.
- W2015265162 hasConceptScore W2015265162C50644808 @default.
- W2015265162 hasConceptScore W2015265162C86582703 @default.
- W2015265162 hasConceptScore W2015265162C95623464 @default.
- W2015265162 hasFunder F4320321005 @default.
- W2015265162 hasFunder F4320322482 @default.
- W2015265162 hasIssue "4" @default.
- W2015265162 hasLocation W20152651621 @default.
- W2015265162 hasLocation W20152651622 @default.
- W2015265162 hasOpenAccess W2015265162 @default.
- W2015265162 hasPrimaryLocation W20152651621 @default.
- W2015265162 hasRelatedWork W1509908531 @default.
- W2015265162 hasRelatedWork W1512639337 @default.
- W2015265162 hasRelatedWork W1584270863 @default.
- W2015265162 hasRelatedWork W1595652908 @default.
- W2015265162 hasRelatedWork W1984233206 @default.