Matches in SemOpenAlex for { <https://semopenalex.org/work/W2015280688> ?p ?o ?g. }
- W2015280688 endingPage "191" @default.
- W2015280688 startingPage "184" @default.
- W2015280688 abstract "Two chemometric methods, WPT-ERNN and least square support vector machines (LS-SVM), were developed to perform the simultaneous spectrophotometric determination of nitrophenol-type compounds with overlapping spectra. The WPT-ERNN method is based on Elman recurrent neural network (ERNN) regression combined with wavelet packet transform (WPT) preprocessing and relies on the concept of combining the idea of WPT denoising with ERNN calibration for enhancing the noise removal ability and the quality of regression without prior separation. The LS-SVM technique is capable of learning a high-dimensional feature with fewer training data and reducing the computational complexity by requiring the solution of only a set of linear equations instead of a quadratic programming problem. The relative standard errors of prediction (RSEPs) obtained for all components using WPT-ERNN, ERNN, LS-SVM, partial least squares (PLS), and multivariate linear regression (MLR) were compared. Experimental results showed that the WPT-ERNN and LS-SVM methods were successful for the simultaneous determination of nitrophenol-type compounds even when severe overlap of spectra was present." @default.
- W2015280688 created "2016-06-24" @default.
- W2015280688 creator A5003734781 @default.
- W2015280688 creator A5078435553 @default.
- W2015280688 date "2010-10-01" @default.
- W2015280688 modified "2023-10-18" @default.
- W2015280688 title "Prediction of nitrophenol-type compounds using chemometrics and spectrophotometry" @default.
- W2015280688 cites W1968063285 @default.
- W2015280688 cites W1969419730 @default.
- W2015280688 cites W1975928498 @default.
- W2015280688 cites W1980080327 @default.
- W2015280688 cites W1980668403 @default.
- W2015280688 cites W1981073019 @default.
- W2015280688 cites W1982934478 @default.
- W2015280688 cites W1985495750 @default.
- W2015280688 cites W1989250592 @default.
- W2015280688 cites W1992823908 @default.
- W2015280688 cites W1999591167 @default.
- W2015280688 cites W2006002961 @default.
- W2015280688 cites W2011322546 @default.
- W2015280688 cites W2021211279 @default.
- W2015280688 cites W2026373769 @default.
- W2015280688 cites W2030405813 @default.
- W2015280688 cites W2030795735 @default.
- W2015280688 cites W2038122417 @default.
- W2015280688 cites W2038828213 @default.
- W2015280688 cites W2053426312 @default.
- W2015280688 cites W2055548936 @default.
- W2015280688 cites W2056137745 @default.
- W2015280688 cites W2058728304 @default.
- W2015280688 cites W2066808973 @default.
- W2015280688 cites W2071929021 @default.
- W2015280688 cites W2074745084 @default.
- W2015280688 cites W2083526237 @default.
- W2015280688 cites W2086381182 @default.
- W2015280688 cites W2088617359 @default.
- W2015280688 cites W2090220788 @default.
- W2015280688 cites W2094891220 @default.
- W2015280688 cites W2098914003 @default.
- W2015280688 cites W2110237869 @default.
- W2015280688 cites W2110485445 @default.
- W2015280688 cites W2121637213 @default.
- W2015280688 cites W2126777570 @default.
- W2015280688 cites W2146842127 @default.
- W2015280688 cites W2149298154 @default.
- W2015280688 cites W2152328854 @default.
- W2015280688 cites W2156447271 @default.
- W2015280688 cites W2157069634 @default.
- W2015280688 cites W2161352219 @default.
- W2015280688 cites W2163443023 @default.
- W2015280688 cites W4250079743 @default.
- W2015280688 doi "https://doi.org/10.1016/j.ab.2010.06.032" @default.
- W2015280688 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/20599647" @default.
- W2015280688 hasPublicationYear "2010" @default.
- W2015280688 type Work @default.
- W2015280688 sameAs 2015280688 @default.
- W2015280688 citedByCount "21" @default.
- W2015280688 countsByYear W20152806882012 @default.
- W2015280688 countsByYear W20152806882013 @default.
- W2015280688 countsByYear W20152806882014 @default.
- W2015280688 countsByYear W20152806882016 @default.
- W2015280688 countsByYear W20152806882017 @default.
- W2015280688 countsByYear W20152806882018 @default.
- W2015280688 countsByYear W20152806882019 @default.
- W2015280688 countsByYear W20152806882020 @default.
- W2015280688 countsByYear W20152806882021 @default.
- W2015280688 countsByYear W20152806882022 @default.
- W2015280688 countsByYear W20152806882023 @default.
- W2015280688 crossrefType "journal-article" @default.
- W2015280688 hasAuthorship W2015280688A5003734781 @default.
- W2015280688 hasAuthorship W2015280688A5078435553 @default.
- W2015280688 hasConcept C119857082 @default.
- W2015280688 hasConcept C12267149 @default.
- W2015280688 hasConcept C126255220 @default.
- W2015280688 hasConcept C145828037 @default.
- W2015280688 hasConcept C151304367 @default.
- W2015280688 hasConcept C153180895 @default.
- W2015280688 hasConcept C154945302 @default.
- W2015280688 hasConcept C22354355 @default.
- W2015280688 hasConcept C33923547 @default.
- W2015280688 hasConcept C34736171 @default.
- W2015280688 hasConcept C41008148 @default.
- W2015280688 hasConcept C70518039 @default.
- W2015280688 hasConcept C81845259 @default.
- W2015280688 hasConceptScore W2015280688C119857082 @default.
- W2015280688 hasConceptScore W2015280688C12267149 @default.
- W2015280688 hasConceptScore W2015280688C126255220 @default.
- W2015280688 hasConceptScore W2015280688C145828037 @default.
- W2015280688 hasConceptScore W2015280688C151304367 @default.
- W2015280688 hasConceptScore W2015280688C153180895 @default.
- W2015280688 hasConceptScore W2015280688C154945302 @default.
- W2015280688 hasConceptScore W2015280688C22354355 @default.
- W2015280688 hasConceptScore W2015280688C33923547 @default.
- W2015280688 hasConceptScore W2015280688C34736171 @default.
- W2015280688 hasConceptScore W2015280688C41008148 @default.
- W2015280688 hasConceptScore W2015280688C70518039 @default.
- W2015280688 hasConceptScore W2015280688C81845259 @default.
- W2015280688 hasFunder F4320321001 @default.