Matches in SemOpenAlex for { <https://semopenalex.org/work/W2015323169> ?p ?o ?g. }
- W2015323169 abstract "We use Brownian dynamics simulations of a binary mixture of highly charged spherical colloidal particles to illustrate many of the implications of the Random First Order Transition (RFOT) theory (PRA 40 1045 (1989)), which is the only theory that provides a unified description of both the statics and dynamics of the liquid to glass transition. In accord with the RFOT, we find that as the volume fraction of the colloidal particles f, the natural variable that controls glass formation in colloidal systems, approaches f_A there is an effective ergodic to non-ergodic dynamical transition, which is signalled by a dramatic slowing down of diffusion. In addition, using the energy metric we show that the system becomes non-ergodic as f_A is approached. The time t^*, at which the four-point dynamical susceptibility achieves a maximum, also diverges near f_A. Remarkably, three independent measures(translational diffusion coefficients, ergodic diffusion coefficients,as well t^*) all signal that at f_A=0.1 ergodicity is effectively broken. The translation diffusion constant, the ergodic diffusion constant, and (t^*)^-1 all vanish as (f_A-f)^g with both f_A and g being the roughly the same for all three quantities. Below f_A transport involves crossing suitable free energy barriers. In this regime, the density-density correlation function decays as a stretched exponential exp(-t/tau_a)^b with b=0.45. The f-dependence of the relaxation time tau_a is well fit using the VFT law with the ideal glass transition occurring at f_K=0.47. By using an approximate measure of the local entropy (s_3) we show that below f_A the law of large numbers, which states that the distribution of s_3 for a large subsample should be identical to the whole sample, is not obeyed. The comprehensive analyses provided here for Wigner glass forming charged colloidal suspensions fully validate the concepts of the RFOT." @default.
- W2015323169 created "2016-06-24" @default.
- W2015323169 creator A5001514618 @default.
- W2015323169 creator A5036725653 @default.
- W2015323169 creator A5074619842 @default.
- W2015323169 date "2013-10-21" @default.
- W2015323169 modified "2023-09-27" @default.
- W2015323169 title "Manifestation of random first-order transition theory in Wigner glasses" @default.
- W2015323169 cites W1553628629 @default.
- W2015323169 cites W1797602497 @default.
- W2015323169 cites W1964164407 @default.
- W2015323169 cites W1971354120 @default.
- W2015323169 cites W1975609785 @default.
- W2015323169 cites W1978488048 @default.
- W2015323169 cites W1979522759 @default.
- W2015323169 cites W1980492771 @default.
- W2015323169 cites W1982421189 @default.
- W2015323169 cites W1989854679 @default.
- W2015323169 cites W1990692826 @default.
- W2015323169 cites W1997046056 @default.
- W2015323169 cites W1998210989 @default.
- W2015323169 cites W1999788401 @default.
- W2015323169 cites W2002735156 @default.
- W2015323169 cites W2010714228 @default.
- W2015323169 cites W2014097419 @default.
- W2015323169 cites W2016038135 @default.
- W2015323169 cites W2019734255 @default.
- W2015323169 cites W2019931764 @default.
- W2015323169 cites W2020183368 @default.
- W2015323169 cites W2021641921 @default.
- W2015323169 cites W2022707276 @default.
- W2015323169 cites W2025596398 @default.
- W2015323169 cites W2026396669 @default.
- W2015323169 cites W2027449093 @default.
- W2015323169 cites W2027602813 @default.
- W2015323169 cites W2027630368 @default.
- W2015323169 cites W2027718072 @default.
- W2015323169 cites W2028340639 @default.
- W2015323169 cites W2028601584 @default.
- W2015323169 cites W2028612487 @default.
- W2015323169 cites W2031641141 @default.
- W2015323169 cites W2032781595 @default.
- W2015323169 cites W2033170233 @default.
- W2015323169 cites W2033742395 @default.
- W2015323169 cites W2034545706 @default.
- W2015323169 cites W2036929199 @default.
- W2015323169 cites W2041582955 @default.
- W2015323169 cites W2043443881 @default.
- W2015323169 cites W2045055947 @default.
- W2015323169 cites W2045790489 @default.
- W2015323169 cites W2046222009 @default.
- W2015323169 cites W2048256935 @default.
- W2015323169 cites W2057364361 @default.
- W2015323169 cites W2058757440 @default.
- W2015323169 cites W2060061805 @default.
- W2015323169 cites W2060941633 @default.
- W2015323169 cites W2063562413 @default.
- W2015323169 cites W2069887987 @default.
- W2015323169 cites W2071446277 @default.
- W2015323169 cites W2080635967 @default.
- W2015323169 cites W2086617685 @default.
- W2015323169 cites W2088948164 @default.
- W2015323169 cites W2094132409 @default.
- W2015323169 cites W2097952819 @default.
- W2015323169 cites W2111759950 @default.
- W2015323169 cites W2120564165 @default.
- W2015323169 cites W2147356670 @default.
- W2015323169 cites W2150619142 @default.
- W2015323169 cites W3104623136 @default.
- W2015323169 doi "https://doi.org/10.1103/physreve.88.042308" @default.
- W2015323169 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24229173" @default.
- W2015323169 hasPublicationYear "2013" @default.
- W2015323169 type Work @default.
- W2015323169 sameAs 2015323169 @default.
- W2015323169 citedByCount "11" @default.
- W2015323169 countsByYear W20153231692015 @default.
- W2015323169 countsByYear W20153231692016 @default.
- W2015323169 countsByYear W20153231692017 @default.
- W2015323169 countsByYear W20153231692018 @default.
- W2015323169 countsByYear W20153231692019 @default.
- W2015323169 countsByYear W20153231692020 @default.
- W2015323169 crossrefType "journal-article" @default.
- W2015323169 hasAuthorship W2015323169A5001514618 @default.
- W2015323169 hasAuthorship W2015323169A5036725653 @default.
- W2015323169 hasAuthorship W2015323169A5074619842 @default.
- W2015323169 hasBestOaLocation W20153231692 @default.
- W2015323169 hasConcept C10138342 @default.
- W2015323169 hasConcept C112401455 @default.
- W2015323169 hasConcept C121332964 @default.
- W2015323169 hasConcept C121864883 @default.
- W2015323169 hasConcept C122044880 @default.
- W2015323169 hasConcept C134306372 @default.
- W2015323169 hasConcept C15744967 @default.
- W2015323169 hasConcept C162324750 @default.
- W2015323169 hasConcept C182306322 @default.
- W2015323169 hasConcept C199360897 @default.
- W2015323169 hasConcept C201779956 @default.
- W2015323169 hasConcept C2776029896 @default.
- W2015323169 hasConcept C2777027219 @default.
- W2015323169 hasConcept C2780004032 @default.