Matches in SemOpenAlex for { <https://semopenalex.org/work/W2015371353> ?p ?o ?g. }
- W2015371353 endingPage "3832" @default.
- W2015371353 startingPage "3826" @default.
- W2015371353 abstract "Hydrated proteins undergo a change in their dynamical properties in the neighborhood of a temperature. The change of dynamics has been likened to glass transition of glass-forming substances because similar properties were found. However, a complete understanding of the conformation fluctuations of hydrated proteins and their relation to the dynamics of the solvent is still not available, possibly due to the protein molecules being more complex than ordinary glass-formers. For this reason, we turn our attention to the experimental findings of the dynamics of mixtures of water with simpler glass-formers (small molecules and polymers). Two major relaxation processes have been observed in these aqueous mixtures. One is the structural alpha-relaxation of the hydrophilic glass-former hydrogen bonded to the water, which is responsible for glass transition. The other one is the local secondary beta-relaxation of water in the mixture. Remarkably, these two relaxation processes in aqueous mixtures have analogues in hydrated proteins with the same properties. The conformation fluctuations of the protein and the relaxation of the solvent in hydrated proteins behave like the alpha-relaxation of the hydrophilic glass-former hydrogen bonded to the water and the beta-relaxation of water in other aqueous mixtures, respectively. At low temperatures, the Arrhenius activation energy of the relaxation time of the solvent in a hydrated protein is almost the same as that of the beta-relaxation of water in the glassy states of aqueous mixtures. The Arrhenius T-dependence of the solvent relaxation times no longer holds at temperatures that exceed the glass transition temperature of the hydrated protein, defined as the temperature at which the conformation relaxation time is very long. This behavior of the solvent in hydrated proteins is similar to that found in the beta-relaxation of water in aqueous mixtures when crossing the glass transition temperature of the mixture (Capaccioli, S.; Ngai, K. L.; Shinyashiki, N. J. Phys. Chem. B 2007, 111, 8197). Furthermore, the same dynamics were found in mixtures of two van der Waals glass-formers, which are even simpler systems than aqueous mixtures because of the absence of hydrogen bonding. The experimental data of these ideal mixtures of van der Waals glass-formers have been given a satisfactory theoretical explanation. Since the properties of hydrated proteins, aqueous mixtures, and the mixtures of van der Waals liquids are similar, we transfer the theoretical understanding gained in the study of the last system sequentially to the two other increasingly more complex systems." @default.
- W2015371353 created "2016-06-24" @default.
- W2015371353 creator A5042185480 @default.
- W2015371353 creator A5076908010 @default.
- W2015371353 creator A5090424201 @default.
- W2015371353 date "2008-03-01" @default.
- W2015371353 modified "2023-10-18" @default.
- W2015371353 title "The Protein “Glass” Transition and the Role of the Solvent" @default.
- W2015371353 cites W1518327983 @default.
- W2015371353 cites W159197400 @default.
- W2015371353 cites W1964981159 @default.
- W2015371353 cites W1968073942 @default.
- W2015371353 cites W1969862863 @default.
- W2015371353 cites W1974814827 @default.
- W2015371353 cites W1975937547 @default.
- W2015371353 cites W1977258623 @default.
- W2015371353 cites W1979923346 @default.
- W2015371353 cites W1987206050 @default.
- W2015371353 cites W1989815312 @default.
- W2015371353 cites W1990140100 @default.
- W2015371353 cites W1992851396 @default.
- W2015371353 cites W1995960423 @default.
- W2015371353 cites W1996373962 @default.
- W2015371353 cites W1997611814 @default.
- W2015371353 cites W1999991404 @default.
- W2015371353 cites W2000596373 @default.
- W2015371353 cites W2001284813 @default.
- W2015371353 cites W2003645337 @default.
- W2015371353 cites W2007049222 @default.
- W2015371353 cites W2011903804 @default.
- W2015371353 cites W2016168599 @default.
- W2015371353 cites W2022981455 @default.
- W2015371353 cites W2034472362 @default.
- W2015371353 cites W2037097997 @default.
- W2015371353 cites W2038295860 @default.
- W2015371353 cites W2048500988 @default.
- W2015371353 cites W2049626269 @default.
- W2015371353 cites W2052833913 @default.
- W2015371353 cites W2058208079 @default.
- W2015371353 cites W2058396634 @default.
- W2015371353 cites W2061380692 @default.
- W2015371353 cites W2063490575 @default.
- W2015371353 cites W2064179045 @default.
- W2015371353 cites W2066559901 @default.
- W2015371353 cites W2067278725 @default.
- W2015371353 cites W2069497476 @default.
- W2015371353 cites W2073126539 @default.
- W2015371353 cites W2073784123 @default.
- W2015371353 cites W2075092972 @default.
- W2015371353 cites W2082129986 @default.
- W2015371353 cites W2084728873 @default.
- W2015371353 cites W2084923621 @default.
- W2015371353 cites W2085085943 @default.
- W2015371353 cites W2086313231 @default.
- W2015371353 cites W2089578350 @default.
- W2015371353 cites W2114615491 @default.
- W2015371353 cites W2120292029 @default.
- W2015371353 cites W2329262551 @default.
- W2015371353 doi "https://doi.org/10.1021/jp710462e" @default.
- W2015371353 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/18318525" @default.
- W2015371353 hasPublicationYear "2008" @default.
- W2015371353 type Work @default.
- W2015371353 sameAs 2015371353 @default.
- W2015371353 citedByCount "80" @default.
- W2015371353 countsByYear W20153713532012 @default.
- W2015371353 countsByYear W20153713532013 @default.
- W2015371353 countsByYear W20153713532014 @default.
- W2015371353 countsByYear W20153713532015 @default.
- W2015371353 countsByYear W20153713532016 @default.
- W2015371353 countsByYear W20153713532017 @default.
- W2015371353 countsByYear W20153713532018 @default.
- W2015371353 countsByYear W20153713532019 @default.
- W2015371353 countsByYear W20153713532020 @default.
- W2015371353 countsByYear W20153713532021 @default.
- W2015371353 countsByYear W20153713532022 @default.
- W2015371353 countsByYear W20153713532023 @default.
- W2015371353 crossrefType "journal-article" @default.
- W2015371353 hasAuthorship W2015371353A5042185480 @default.
- W2015371353 hasAuthorship W2015371353A5076908010 @default.
- W2015371353 hasAuthorship W2015371353A5090424201 @default.
- W2015371353 hasConcept C121332964 @default.
- W2015371353 hasConcept C122865956 @default.
- W2015371353 hasConcept C147789679 @default.
- W2015371353 hasConcept C15744967 @default.
- W2015371353 hasConcept C159467904 @default.
- W2015371353 hasConcept C178790620 @default.
- W2015371353 hasConcept C184651966 @default.
- W2015371353 hasConcept C185592680 @default.
- W2015371353 hasConcept C2776029896 @default.
- W2015371353 hasConcept C2780471494 @default.
- W2015371353 hasConcept C32909587 @default.
- W2015371353 hasConcept C521977710 @default.
- W2015371353 hasConcept C77805123 @default.
- W2015371353 hasConcept C86183883 @default.
- W2015371353 hasConcept C95121573 @default.
- W2015371353 hasConcept C97355855 @default.
- W2015371353 hasConceptScore W2015371353C121332964 @default.
- W2015371353 hasConceptScore W2015371353C122865956 @default.