Matches in SemOpenAlex for { <https://semopenalex.org/work/W2015411580> ?p ?o ?g. }
- W2015411580 endingPage "220" @default.
- W2015411580 startingPage "212" @default.
- W2015411580 abstract "•The integrity of the germline is maintained by transgenerationally transmitted small RNA ‘memories’. •Small RNAs record ancestral gene expression patterns and distinguish ‘self’ from ‘foreign’ sequences. •Small RNAs ‘keep separate lists’ of invading nucleic acids and of endogenous genes. •Transgenerational small RNA memory serves as an ‘inherited vaccine’ that attacks invading elements and licenses endogenous genes for expression. Small RNA-mediated gene silencing plays a pivotal role in genome immunity by recognizing and eliminating viruses and transposons that may otherwise colonize the genome. However, individual genomic parasites are highly diverse and employ multiple immune-evasion techniques, making this silencing challenging. Here I review a new theory proposing that the integrity of the germline is maintained by transgenerationally transmitted RNA ‘memories’ that record ancestral gene expression patterns and delineate ‘self’ from ‘foreign’ sequences. To maintain such recollection, two tactics are employed in parallel: ‘black listing’ of invading nucleic acids and ‘guest listing’ of endogenous genes. Studies in several organisms have shown that this memorization is used by the next generation of small RNAs to act as ‘inherited vaccines’ that attack invading elements or as ‘inherited licenses’ that permit the transcription of autogenous sequences. Small RNA-mediated gene silencing plays a pivotal role in genome immunity by recognizing and eliminating viruses and transposons that may otherwise colonize the genome. However, individual genomic parasites are highly diverse and employ multiple immune-evasion techniques, making this silencing challenging. Here I review a new theory proposing that the integrity of the germline is maintained by transgenerationally transmitted RNA ‘memories’ that record ancestral gene expression patterns and delineate ‘self’ from ‘foreign’ sequences. To maintain such recollection, two tactics are employed in parallel: ‘black listing’ of invading nucleic acids and ‘guest listing’ of endogenous genes. Studies in several organisms have shown that this memorization is used by the next generation of small RNAs to act as ‘inherited vaccines’ that attack invading elements or as ‘inherited licenses’ that permit the transcription of autogenous sequences. the biochemical process involving the addition of a methyl group to the 5 position of the cytosine pyrimidine ring. This modification stably alters the expression of genes and can be heritable. autonomously generated siRNAs. The biogenesis of endo-siRNA remains poorly understood; however, endo-siRNAs were demonstrated to derive from repetitive sequences and from areas that encode dsRNA structures, such as sites of convergent transcription. In addition, antisense endo-siRNAs can be transcribed off natural mRNAs, presumably via RdRP activity. heritable changes that arise independently of changes to the DNA sequence. heritable epigenetic changes that persist across generations, as opposed to epigenetic changes that are maintained over cell divisions. histones can be covalently modified at several sites. There are many different histone modifications including methylation, acetylation, phosphorylation, ubiquitination, SUMOylation, citrullination, and ADP-ribosylation. The different modifications comprise a ‘histone code’ that affects multiple functions such as gene expression and chromatin condensation. immune responses that persist across generations. In the case of heritable small RNA-mediated immunity, the ‘vaccines’ – siRNAs, viRNAs or piRNAs – are directly derived from the subdued genomic parasite and target the disease, similarly to antibodies, when the pathogen is next encountered. categorical traits that are regulated by a single locus and segregate according to Mendel's laws of inheritance. small RNAs that interact with PIWI proteins. piRNAs are mostly expressed in germ cells, where they silence retrotransposons and other mobile elements. RNA-dependent RNA polymerases are enzymes which replicate RNA using RNA as a template. the mechanism that allows organisms with genotypes that fit specific environments to survive, reproduce, and increase in number over generations. the unification of Darwin's mechanism of natural selection with Mendel's theory of heredity and the principles of population genetics. one of multiple species of mobile genetic elements that change their location in the genome by ‘jumping’. Transposons are classified based on the mechanism of transposition, which can entail mobilization following self-replication (class I) or by ‘cutting and pasting’ (class II). an agent that stimulates the immune system to respond against specific pathogens and typically resembles or is derived from the disease agent itself. For example, vaccines can be made from a weakened virus or bacterium and can lead to production of antibodies. the differences between individuals of the same species. small RNAs that correspond to a viral genome and start a cascade that leads to the elimination of the virus. Typically, primary viRNAs are DICER products that are chopped directly from a dsRNA viral sequence (synthesis of dsRNA intermediates is required for replication of RNA viruses). Primary viRNAs serve as primers for the amplification of secondary viRNAs by RdRPs." @default.
- W2015411580 created "2016-06-24" @default.
- W2015411580 creator A5042854410 @default.
- W2015411580 date "2014-04-01" @default.
- W2015411580 modified "2023-10-07" @default.
- W2015411580 title "Guest list or black list: heritable small RNAs as immunogenic memories" @default.
- W2015411580 cites W1616982859 @default.
- W2015411580 cites W1861196385 @default.
- W2015411580 cites W1916491745 @default.
- W2015411580 cites W1932753289 @default.
- W2015411580 cites W1963708619 @default.
- W2015411580 cites W1964388814 @default.
- W2015411580 cites W1965574594 @default.
- W2015411580 cites W1971373251 @default.
- W2015411580 cites W1973510303 @default.
- W2015411580 cites W1976935056 @default.
- W2015411580 cites W1981342711 @default.
- W2015411580 cites W1982163053 @default.
- W2015411580 cites W1989454102 @default.
- W2015411580 cites W1993381966 @default.
- W2015411580 cites W1993907364 @default.
- W2015411580 cites W1999886327 @default.
- W2015411580 cites W2001603328 @default.
- W2015411580 cites W2004271888 @default.
- W2015411580 cites W2008868324 @default.
- W2015411580 cites W2009576434 @default.
- W2015411580 cites W2009866838 @default.
- W2015411580 cites W2009957319 @default.
- W2015411580 cites W2010321976 @default.
- W2015411580 cites W2010986636 @default.
- W2015411580 cites W2015146557 @default.
- W2015411580 cites W2015423672 @default.
- W2015411580 cites W2018295108 @default.
- W2015411580 cites W2019896138 @default.
- W2015411580 cites W2020639485 @default.
- W2015411580 cites W2021761784 @default.
- W2015411580 cites W2024211037 @default.
- W2015411580 cites W2026343134 @default.
- W2015411580 cites W2027610589 @default.
- W2015411580 cites W2027891004 @default.
- W2015411580 cites W2028444170 @default.
- W2015411580 cites W2030071264 @default.
- W2015411580 cites W2031110588 @default.
- W2015411580 cites W2032640887 @default.
- W2015411580 cites W2032964111 @default.
- W2015411580 cites W2038720758 @default.
- W2015411580 cites W2040708394 @default.
- W2015411580 cites W2051181167 @default.
- W2015411580 cites W2051252016 @default.
- W2015411580 cites W2055313665 @default.
- W2015411580 cites W2059996756 @default.
- W2015411580 cites W2063317473 @default.
- W2015411580 cites W2064259885 @default.
- W2015411580 cites W2068711892 @default.
- W2015411580 cites W2068847708 @default.
- W2015411580 cites W2074897380 @default.
- W2015411580 cites W2075331723 @default.
- W2015411580 cites W2076329927 @default.
- W2015411580 cites W2080248723 @default.
- W2015411580 cites W2091070751 @default.
- W2015411580 cites W2095282684 @default.
- W2015411580 cites W2097002988 @default.
- W2015411580 cites W2100451532 @default.
- W2015411580 cites W2102985318 @default.
- W2015411580 cites W2104128362 @default.
- W2015411580 cites W2107330252 @default.
- W2015411580 cites W2107961632 @default.
- W2015411580 cites W2113377893 @default.
- W2015411580 cites W2114037525 @default.
- W2015411580 cites W2117991391 @default.
- W2015411580 cites W2120629724 @default.
- W2015411580 cites W2122550126 @default.
- W2015411580 cites W2122984483 @default.
- W2015411580 cites W2132767295 @default.
- W2015411580 cites W2133924996 @default.
- W2015411580 cites W2135802673 @default.
- W2015411580 cites W2141729181 @default.
- W2015411580 cites W2142305917 @default.
- W2015411580 cites W2145072184 @default.
- W2015411580 cites W2151345601 @default.
- W2015411580 cites W2154222068 @default.
- W2015411580 cites W2156300996 @default.
- W2015411580 cites W2159086136 @default.
- W2015411580 cites W2160170702 @default.
- W2015411580 cites W2161560970 @default.
- W2015411580 cites W2161976991 @default.
- W2015411580 cites W2162578547 @default.
- W2015411580 cites W2164976005 @default.
- W2015411580 cites W2166903671 @default.
- W2015411580 cites W2169244146 @default.
- W2015411580 cites W2170430743 @default.
- W2015411580 cites W3106354469 @default.
- W2015411580 doi "https://doi.org/10.1016/j.tcb.2013.10.003" @default.
- W2015411580 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5086087" @default.
- W2015411580 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24231398" @default.
- W2015411580 hasPublicationYear "2014" @default.
- W2015411580 type Work @default.
- W2015411580 sameAs 2015411580 @default.