Matches in SemOpenAlex for { <https://semopenalex.org/work/W2015441607> ?p ?o ?g. }
- W2015441607 endingPage "547" @default.
- W2015441607 startingPage "517" @default.
- W2015441607 abstract "Ground surface settlement due to tunnel excavation varies in magnitude and trend depending on several factors such as tunnel geometry, ground conditions, etc. Although there are several empirical and semi-empirical formulae available for predicting ground surface settlement, most of these do not simultaneously take into consideration all the relevant factors, resulting in inaccurate predictions. In this study, an artificial neural network (ANN) is incorporated with '113' of monitored field results to predict surface settlement for a tunnel site with prescribed conditions. To achieve this, a standard format (a protocol) for a database of monitored field data is first proposed and then used for sorting out a variety of monitored data sets available in KICT. Using the capabilities of pattern recognition and memorization of the ANN, an attempt is made to capture the rich physical characteristics smeared in the database and at the same time filter inherent noise in the monitored data. Here, an optimal neural network model is suggested through preliminary parametric studies. It is shown that preliminary studies for generating an optimal ANN under given training data sets are necessary because no analytical method for this purpose is available to date. In addition, this study introduces a concept of relative strength of effects (RSE) [Yang Y, Zhang Q. A heirarchical analysis for rock engineering using artificial neural networks. Rock Mechanics and Rock Engineering 1997; 30(4): 207–22] in sensitivity analysis for various major factors affecting the surface settlement in tunnelling. It is seen in some examples that the RSE rationally enables us to recognize the most significant factors of all the contributing factors. Two verification examples are undertaken with the trained ANN using the database created in this study. It is shown from the examples that the ANN has adequately recognized the characteristics of the monitored data sets retaining a generality for further prediction. It is believed that an ANN based hierarchical prediction procedure shown in this paper can be further employed in many kinds of geotechnical engineering problems with inherent uncertainties and imperfections." @default.
- W2015441607 created "2016-06-24" @default.
- W2015441607 creator A5006805600 @default.
- W2015441607 creator A5009297752 @default.
- W2015441607 creator A5031253753 @default.
- W2015441607 creator A5052506004 @default.
- W2015441607 creator A5064123963 @default.
- W2015441607 creator A5081119896 @default.
- W2015441607 date "2001-09-01" @default.
- W2015441607 modified "2023-09-30" @default.
- W2015441607 title "Neural network based prediction of ground surface settlements due to tunnelling" @default.
- W2015441607 cites W1964857079 @default.
- W2015441607 cites W1976867185 @default.
- W2015441607 cites W1984619576 @default.
- W2015441607 cites W1986486385 @default.
- W2015441607 cites W1995500411 @default.
- W2015441607 cites W2000339835 @default.
- W2015441607 cites W2003297705 @default.
- W2015441607 cites W2020363785 @default.
- W2015441607 cites W2036093555 @default.
- W2015441607 cites W2047350787 @default.
- W2015441607 cites W2051835934 @default.
- W2015441607 cites W2061391314 @default.
- W2015441607 cites W2068229263 @default.
- W2015441607 cites W2091261318 @default.
- W2015441607 doi "https://doi.org/10.1016/s0266-352x(01)00011-8" @default.
- W2015441607 hasPublicationYear "2001" @default.
- W2015441607 type Work @default.
- W2015441607 sameAs 2015441607 @default.
- W2015441607 citedByCount "191" @default.
- W2015441607 countsByYear W20154416072012 @default.
- W2015441607 countsByYear W20154416072013 @default.
- W2015441607 countsByYear W20154416072014 @default.
- W2015441607 countsByYear W20154416072015 @default.
- W2015441607 countsByYear W20154416072016 @default.
- W2015441607 countsByYear W20154416072017 @default.
- W2015441607 countsByYear W20154416072018 @default.
- W2015441607 countsByYear W20154416072019 @default.
- W2015441607 countsByYear W20154416072020 @default.
- W2015441607 countsByYear W20154416072021 @default.
- W2015441607 countsByYear W20154416072022 @default.
- W2015441607 countsByYear W20154416072023 @default.
- W2015441607 crossrefType "journal-article" @default.
- W2015441607 hasAuthorship W2015441607A5006805600 @default.
- W2015441607 hasAuthorship W2015441607A5009297752 @default.
- W2015441607 hasAuthorship W2015441607A5031253753 @default.
- W2015441607 hasAuthorship W2015441607A5052506004 @default.
- W2015441607 hasAuthorship W2015441607A5064123963 @default.
- W2015441607 hasAuthorship W2015441607A5081119896 @default.
- W2015441607 hasConcept C105795698 @default.
- W2015441607 hasConcept C117251300 @default.
- W2015441607 hasConcept C124101348 @default.
- W2015441607 hasConcept C127413603 @default.
- W2015441607 hasConcept C136764020 @default.
- W2015441607 hasConcept C145097563 @default.
- W2015441607 hasConcept C154945302 @default.
- W2015441607 hasConcept C187320778 @default.
- W2015441607 hasConcept C202444582 @default.
- W2015441607 hasConcept C21200559 @default.
- W2015441607 hasConcept C24326235 @default.
- W2015441607 hasConcept C2777063073 @default.
- W2015441607 hasConcept C33923547 @default.
- W2015441607 hasConcept C41008148 @default.
- W2015441607 hasConcept C50644808 @default.
- W2015441607 hasConcept C9652623 @default.
- W2015441607 hasConceptScore W2015441607C105795698 @default.
- W2015441607 hasConceptScore W2015441607C117251300 @default.
- W2015441607 hasConceptScore W2015441607C124101348 @default.
- W2015441607 hasConceptScore W2015441607C127413603 @default.
- W2015441607 hasConceptScore W2015441607C136764020 @default.
- W2015441607 hasConceptScore W2015441607C145097563 @default.
- W2015441607 hasConceptScore W2015441607C154945302 @default.
- W2015441607 hasConceptScore W2015441607C187320778 @default.
- W2015441607 hasConceptScore W2015441607C202444582 @default.
- W2015441607 hasConceptScore W2015441607C21200559 @default.
- W2015441607 hasConceptScore W2015441607C24326235 @default.
- W2015441607 hasConceptScore W2015441607C2777063073 @default.
- W2015441607 hasConceptScore W2015441607C33923547 @default.
- W2015441607 hasConceptScore W2015441607C41008148 @default.
- W2015441607 hasConceptScore W2015441607C50644808 @default.
- W2015441607 hasConceptScore W2015441607C9652623 @default.
- W2015441607 hasIssue "6-7" @default.
- W2015441607 hasLocation W20154416071 @default.
- W2015441607 hasOpenAccess W2015441607 @default.
- W2015441607 hasPrimaryLocation W20154416071 @default.
- W2015441607 hasRelatedWork W2092268589 @default.
- W2015441607 hasRelatedWork W2163740454 @default.
- W2015441607 hasRelatedWork W2182839261 @default.
- W2015441607 hasRelatedWork W2349896076 @default.
- W2015441607 hasRelatedWork W2366345784 @default.
- W2015441607 hasRelatedWork W2369430969 @default.
- W2015441607 hasRelatedWork W2382492503 @default.
- W2015441607 hasRelatedWork W2386387936 @default.
- W2015441607 hasRelatedWork W2899084033 @default.
- W2015441607 hasRelatedWork W3004167701 @default.
- W2015441607 hasVolume "28" @default.
- W2015441607 isParatext "false" @default.
- W2015441607 isRetracted "false" @default.