Matches in SemOpenAlex for { <https://semopenalex.org/work/W2015444748> ?p ?o ?g. }
- W2015444748 abstract "In this paper we give some characterizations of functionally compact Hausdorff spaces in terms of multifunctions. Also, some applications are presented. Introduction. Hausdorff functionally compact spaces have been introduced in 1969 by Dickman and Zame [2]. Some characterizations of such spaces, in terms of covers, have been given by Goss and Viglino [5] and by Lim and Tan [8]. Other characterizations, in terms of nets, have been found by Herrington [4]. The main purpose of this note is to establish a characterization of Hausdorff functionally compact spaces in terms of multifunctions. From our main result, we then obtain some generalizations of a theorem proved by Herrington and Long in [6]. 1. Preliminaries. In the sequel, we will follow the notation of [3 and 9]. We recall only some definitions. DEFINITION 1.1. Let X be a topological space. A filterbase in X is a family 1 of subsets of X with the property that for every F1, F2 E . there is F3 E . such that F3 C F1 n F2. It is allowed that 0 E F. The adherence of the filterbase 1 is the set A = nF F. We say that 1 converges to A if for every open set V C X, with A C V, there exists F E . such that F C V. DEFINITION 1. 2. Let X, Y be two topological spaces. A multifunction 41 from X into Y (briefly, 4D: X -* 2Y) is a function from X into the family of all subsets of Y. For every A C X, and B C Y, we put 40(A) = UXeA ?(x) and 40-1(B) = {x E x: ?(x) n B f 0}. We say that 4D is open (resp. closed) if 40(A) is open (resp. closed) in Y for every open (resp. closed) set A C X. We say that 4D is upper (resp. lower) semicontinuous if 40-l(B) is closed (resp. open) in X for every closed (resp. open) set B C Y. In particular, observe that 4D is upper semicontinuous if and only if for every x E X and every open set V C Y, with 40(x) C V, there exists U E Bz (B9 denotes the family of all open neighborhoods of x) such that 40(U) C V. We say that 4D is continuous if it is upper and lower semicontinuous. The graph of 4D is the set Gr(4D) = {(x, y) E X x Y: y E 40(x)}. We say that 41 has a closed graph if Gr(4D) is closed in X x Y. It is well known that the following characterization holds: PROPOSITION 1.3. Let X and Y be two topological spaces. Then, a multifunction 4D: X -* 2Y has a closed graph if and only if 4?(x) = nuEB ?(U) for all x E X. DEFINITION 1.4. Let X be a topological space and A C X. We put cl10(A) = x E X: VU E B9UnA : 0}. Received by the editors June 3, 1985 and, in revised form, October 10, 1985. 1980 Mathematics Subject Classification (1985 Revision). Primary 54D30, 54C60. (@)1986 American Mathematical Society 0002-9939/86 $1.00 + $.25 per page" @default.
- W2015444748 created "2016-06-24" @default.
- W2015444748 creator A5067666536 @default.
- W2015444748 date "1986-03-01" @default.
- W2015444748 modified "2023-09-25" @default.
- W2015444748 title "A note on functionally compact spaces" @default.
- W2015444748 cites W1979762422 @default.
- W2015444748 cites W1997294545 @default.
- W2015444748 cites W1999072579 @default.
- W2015444748 cites W2008218132 @default.
- W2015444748 cites W2031554641 @default.
- W2015444748 cites W2036019415 @default.
- W2015444748 cites W2036144951 @default.
- W2015444748 cites W2042946083 @default.
- W2015444748 cites W2090094213 @default.
- W2015444748 cites W2167166581 @default.
- W2015444748 cites W2907004239 @default.
- W2015444748 doi "https://doi.org/10.1090/s0002-9939-1986-0857951-6" @default.
- W2015444748 hasPublicationYear "1986" @default.
- W2015444748 type Work @default.
- W2015444748 sameAs 2015444748 @default.
- W2015444748 citedByCount "1" @default.
- W2015444748 countsByYear W20154447482021 @default.
- W2015444748 crossrefType "journal-article" @default.
- W2015444748 hasAuthorship W2015444748A5067666536 @default.
- W2015444748 hasBestOaLocation W20154447481 @default.
- W2015444748 hasConcept C104317684 @default.
- W2015444748 hasConcept C111919701 @default.
- W2015444748 hasConcept C118615104 @default.
- W2015444748 hasConcept C120665830 @default.
- W2015444748 hasConcept C121332964 @default.
- W2015444748 hasConcept C14036430 @default.
- W2015444748 hasConcept C142730499 @default.
- W2015444748 hasConcept C147902342 @default.
- W2015444748 hasConcept C177264268 @default.
- W2015444748 hasConcept C185592680 @default.
- W2015444748 hasConcept C191399826 @default.
- W2015444748 hasConcept C199360897 @default.
- W2015444748 hasConcept C202444582 @default.
- W2015444748 hasConcept C21688789 @default.
- W2015444748 hasConcept C2778572836 @default.
- W2015444748 hasConcept C2780841128 @default.
- W2015444748 hasConcept C31498916 @default.
- W2015444748 hasConcept C33923547 @default.
- W2015444748 hasConcept C41008148 @default.
- W2015444748 hasConcept C47776270 @default.
- W2015444748 hasConcept C55112680 @default.
- W2015444748 hasConcept C55493867 @default.
- W2015444748 hasConcept C6183050 @default.
- W2015444748 hasConcept C6419321 @default.
- W2015444748 hasConcept C78458016 @default.
- W2015444748 hasConcept C81332173 @default.
- W2015444748 hasConcept C86803240 @default.
- W2015444748 hasConceptScore W2015444748C104317684 @default.
- W2015444748 hasConceptScore W2015444748C111919701 @default.
- W2015444748 hasConceptScore W2015444748C118615104 @default.
- W2015444748 hasConceptScore W2015444748C120665830 @default.
- W2015444748 hasConceptScore W2015444748C121332964 @default.
- W2015444748 hasConceptScore W2015444748C14036430 @default.
- W2015444748 hasConceptScore W2015444748C142730499 @default.
- W2015444748 hasConceptScore W2015444748C147902342 @default.
- W2015444748 hasConceptScore W2015444748C177264268 @default.
- W2015444748 hasConceptScore W2015444748C185592680 @default.
- W2015444748 hasConceptScore W2015444748C191399826 @default.
- W2015444748 hasConceptScore W2015444748C199360897 @default.
- W2015444748 hasConceptScore W2015444748C202444582 @default.
- W2015444748 hasConceptScore W2015444748C21688789 @default.
- W2015444748 hasConceptScore W2015444748C2778572836 @default.
- W2015444748 hasConceptScore W2015444748C2780841128 @default.
- W2015444748 hasConceptScore W2015444748C31498916 @default.
- W2015444748 hasConceptScore W2015444748C33923547 @default.
- W2015444748 hasConceptScore W2015444748C41008148 @default.
- W2015444748 hasConceptScore W2015444748C47776270 @default.
- W2015444748 hasConceptScore W2015444748C55112680 @default.
- W2015444748 hasConceptScore W2015444748C55493867 @default.
- W2015444748 hasConceptScore W2015444748C6183050 @default.
- W2015444748 hasConceptScore W2015444748C6419321 @default.
- W2015444748 hasConceptScore W2015444748C78458016 @default.
- W2015444748 hasConceptScore W2015444748C81332173 @default.
- W2015444748 hasConceptScore W2015444748C86803240 @default.
- W2015444748 hasLocation W20154447481 @default.
- W2015444748 hasOpenAccess W2015444748 @default.
- W2015444748 hasPrimaryLocation W20154447481 @default.
- W2015444748 hasRelatedWork W103046290 @default.
- W2015444748 hasRelatedWork W1989211003 @default.
- W2015444748 hasRelatedWork W2044773199 @default.
- W2015444748 hasRelatedWork W2046916971 @default.
- W2015444748 hasRelatedWork W2124181192 @default.
- W2015444748 hasRelatedWork W2329790487 @default.
- W2015444748 hasRelatedWork W2495976742 @default.
- W2015444748 hasRelatedWork W2592060135 @default.
- W2015444748 hasRelatedWork W2761453547 @default.
- W2015444748 hasRelatedWork W2883343 @default.
- W2015444748 hasRelatedWork W2962677657 @default.
- W2015444748 hasRelatedWork W3021288505 @default.
- W2015444748 hasRelatedWork W3158127729 @default.
- W2015444748 hasRelatedWork W2185134420 @default.
- W2015444748 isParatext "false" @default.
- W2015444748 isRetracted "false" @default.
- W2015444748 magId "2015444748" @default.