Matches in SemOpenAlex for { <https://semopenalex.org/work/W2015453663> ?p ?o ?g. }
- W2015453663 endingPage "4727" @default.
- W2015453663 startingPage "4714" @default.
- W2015453663 abstract "Supplier selection and evaluation is a complicated and disputed issue in supply chain network management, by virtue of the variety of intellectual property of the suppliers, the several variables involved in supply demand relationship, the complex interactions and the inadequate information of suppliers. The recent literature confirms that neural networks achieve better performance than conventional methods in this area. Hence, in this paper, an effective artificial intelligence (AI) approach is presented to improve the decision making for a supply chain which is successfully utilized for long-term prediction of the performance data in cosmetics industry. A computationally efficient model known as locally linear neuro-fuzzy (LLNF) is introduced to predict the performance rating of suppliers. The proposed model is trained by a locally linear model tree (LOLIMOT) learning algorithm. To demonstrate the performance of the proposed model, three intelligent techniques, multi-layer perceptron (MLP) neural network, radial basis function (RBF) neural network and least square-support vector machine (LS-SVM) are considered. Their results are compared by using an available dataset in cosmetics industry. The computational results show that the presented model performs better than three foregoing techniques." @default.
- W2015453663 created "2016-06-24" @default.
- W2015453663 creator A5010506346 @default.
- W2015453663 creator A5019742035 @default.
- W2015453663 creator A5071313016 @default.
- W2015453663 creator A5084753949 @default.
- W2015453663 date "2012-10-01" @default.
- W2015453663 modified "2023-09-25" @default.
- W2015453663 title "A locally linear neuro-fuzzy model for supplier selection in cosmetics industry" @default.
- W2015453663 cites W1897193653 @default.
- W2015453663 cites W1965442071 @default.
- W2015453663 cites W1969919034 @default.
- W2015453663 cites W1970886327 @default.
- W2015453663 cites W1971489618 @default.
- W2015453663 cites W1972968145 @default.
- W2015453663 cites W1973683233 @default.
- W2015453663 cites W1978172667 @default.
- W2015453663 cites W1990019049 @default.
- W2015453663 cites W1999828312 @default.
- W2015453663 cites W1999950269 @default.
- W2015453663 cites W2002472310 @default.
- W2015453663 cites W2002967360 @default.
- W2015453663 cites W2003074920 @default.
- W2015453663 cites W2005369724 @default.
- W2015453663 cites W2006725660 @default.
- W2015453663 cites W2012076552 @default.
- W2015453663 cites W2012308696 @default.
- W2015453663 cites W2013777142 @default.
- W2015453663 cites W2015820149 @default.
- W2015453663 cites W2016207828 @default.
- W2015453663 cites W2018357431 @default.
- W2015453663 cites W2020360355 @default.
- W2015453663 cites W2020432772 @default.
- W2015453663 cites W2020832745 @default.
- W2015453663 cites W2021353881 @default.
- W2015453663 cites W2022798133 @default.
- W2015453663 cites W2022946390 @default.
- W2015453663 cites W2027306909 @default.
- W2015453663 cites W2029192807 @default.
- W2015453663 cites W2032671051 @default.
- W2015453663 cites W2040931701 @default.
- W2015453663 cites W2047762758 @default.
- W2015453663 cites W2051620589 @default.
- W2015453663 cites W2057581061 @default.
- W2015453663 cites W2058366592 @default.
- W2015453663 cites W2064802003 @default.
- W2015453663 cites W2068810721 @default.
- W2015453663 cites W2069047073 @default.
- W2015453663 cites W2073333753 @default.
- W2015453663 cites W2075033199 @default.
- W2015453663 cites W2079406519 @default.
- W2015453663 cites W2080853999 @default.
- W2015453663 cites W2082849886 @default.
- W2015453663 cites W2084922711 @default.
- W2015453663 cites W2089430114 @default.
- W2015453663 cites W2089950778 @default.
- W2015453663 cites W2093996214 @default.
- W2015453663 cites W2109078928 @default.
- W2015453663 cites W2109906847 @default.
- W2015453663 cites W2126120913 @default.
- W2015453663 cites W2145455869 @default.
- W2015453663 cites W2161400247 @default.
- W2015453663 cites W2162309218 @default.
- W2015453663 cites W2625018329 @default.
- W2015453663 cites W3167585610 @default.
- W2015453663 doi "https://doi.org/10.1016/j.apm.2011.12.006" @default.
- W2015453663 hasPublicationYear "2012" @default.
- W2015453663 type Work @default.
- W2015453663 sameAs 2015453663 @default.
- W2015453663 citedByCount "63" @default.
- W2015453663 countsByYear W20154536632012 @default.
- W2015453663 countsByYear W20154536632013 @default.
- W2015453663 countsByYear W20154536632014 @default.
- W2015453663 countsByYear W20154536632015 @default.
- W2015453663 countsByYear W20154536632016 @default.
- W2015453663 countsByYear W20154536632017 @default.
- W2015453663 countsByYear W20154536632018 @default.
- W2015453663 countsByYear W20154536632019 @default.
- W2015453663 countsByYear W20154536632020 @default.
- W2015453663 countsByYear W20154536632021 @default.
- W2015453663 countsByYear W20154536632022 @default.
- W2015453663 countsByYear W20154536632023 @default.
- W2015453663 crossrefType "journal-article" @default.
- W2015453663 hasAuthorship W2015453663A5010506346 @default.
- W2015453663 hasAuthorship W2015453663A5019742035 @default.
- W2015453663 hasAuthorship W2015453663A5071313016 @default.
- W2015453663 hasAuthorship W2015453663A5084753949 @default.
- W2015453663 hasConcept C108713360 @default.
- W2015453663 hasConcept C119857082 @default.
- W2015453663 hasConcept C12267149 @default.
- W2015453663 hasConcept C124101348 @default.
- W2015453663 hasConcept C154945302 @default.
- W2015453663 hasConcept C17744445 @default.
- W2015453663 hasConcept C179717631 @default.
- W2015453663 hasConcept C199539241 @default.
- W2015453663 hasConcept C2778897053 @default.
- W2015453663 hasConcept C41008148 @default.
- W2015453663 hasConcept C44104985 @default.