Matches in SemOpenAlex for { <https://semopenalex.org/work/W2015472235> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2015472235 endingPage "127" @default.
- W2015472235 startingPage "99" @default.
- W2015472235 abstract "PROBLEMS concerning the motion of a rigid body with cavities filled with viscous fluid are of theoretical and practical interest. Such problems involve the difficulties both of hydrodynamic problems and of problems of the dynamics of a rigid body. Zhukovskii [1] was the first to investigate such a topic. Several results on the stability of the motion of a body with cavities containing viscous fluid were obtained in [2]. An asymptotic method was proposed in [3] for studying the small oscillations of a viscous fluid in the cavity of a rigid body for large Reynolds numbers, and was applied in [4] to the solution of several specific problems. There is a considerable literature on the motion of a viscous incompressible fluid at small Reynolds numbers. The usual method of solution is linearization of the Navier — Stokes equations with subsequent solution of the linear non-stationary boundary value problems [5]. Several problems of the dynamics of a rigid body with cavities filled with viscous fluid at small Reynolds numbers were discussed in [6], where use was made of the familiar solutions of the non-stationary linear problems of hydrodynamics for an infinite cylinder and sphere. We consider in the present paper the general problem of the motion of a viscous incompressible fluid in the cavity of a rigid body, and of the motion of the rigid body itself. The cavity can be of any shape, and our only assumption is that the Reynolds number be small. The hydrodynamic problem is shown to reduce to the solution of three stationary linear boundary value problems, which have to be solved once for each given cavity shape. Certain integrals of the solutions obtained then have to be evaluated, after which a system of ordinary differential equations can be written for the motion of the body with the cavity. This system will be written in a general form. The manner of solution is thus similar to that for the problem of the motion of a rigid body with a cavity containing an ideal fluid (with irrotational motion). We know from [1] that, in the case of an ideal fluid, we again have to solve three boundary value problems for each type of cavity, then evaluate integrals of the solutions (associated moments of inertia). The solution of these stationary boundary value problems is given for certain types of cavity (sphere, triaxial ellipsoid and finite cylinder) filled with viscous fluid. The ordinary differential equations for the motion of the body plus cavity are discussed, and are shown to be solvable by asymptotic methods. Some examples are analysed. The damping of the plane rotations and nonlinear oscillations of the body plus fluid in a gravitational field is obtained. The three-dimensional free motion of the body plus fluid is examined. It is well known that the only stable motion in this case is uniform rotation about the axis of maximum moment of inertia [1, 2]. The entire transitional process leading to this stable motion is here examined, and the duration of the transitional process obtained." @default.
- W2015472235 created "2016-06-24" @default.
- W2015472235 creator A5021259574 @default.
- W2015472235 date "1965-01-01" @default.
- W2015472235 modified "2023-09-25" @default.
- W2015472235 title "Motion of a rigid body with cavities filled with viscous fluid at small Reynolds numbers" @default.
- W2015472235 cites W1508962341 @default.
- W2015472235 cites W2074126690 @default.
- W2015472235 cites W2081338783 @default.
- W2015472235 doi "https://doi.org/10.1016/0041-5553(65)90101-1" @default.
- W2015472235 hasPublicationYear "1965" @default.
- W2015472235 type Work @default.
- W2015472235 sameAs 2015472235 @default.
- W2015472235 citedByCount "22" @default.
- W2015472235 countsByYear W20154722352012 @default.
- W2015472235 countsByYear W20154722352013 @default.
- W2015472235 countsByYear W20154722352015 @default.
- W2015472235 countsByYear W20154722352017 @default.
- W2015472235 countsByYear W20154722352018 @default.
- W2015472235 countsByYear W20154722352019 @default.
- W2015472235 countsByYear W20154722352021 @default.
- W2015472235 countsByYear W20154722352022 @default.
- W2015472235 crossrefType "journal-article" @default.
- W2015472235 hasAuthorship W2015472235A5021259574 @default.
- W2015472235 hasConcept C104114177 @default.
- W2015472235 hasConcept C121332964 @default.
- W2015472235 hasConcept C12731421 @default.
- W2015472235 hasConcept C145980571 @default.
- W2015472235 hasConcept C157334427 @default.
- W2015472235 hasConcept C182748727 @default.
- W2015472235 hasConcept C19191322 @default.
- W2015472235 hasConcept C196558001 @default.
- W2015472235 hasConcept C203311528 @default.
- W2015472235 hasConcept C2524010 @default.
- W2015472235 hasConcept C33923547 @default.
- W2015472235 hasConcept C38349280 @default.
- W2015472235 hasConcept C57879066 @default.
- W2015472235 hasConcept C71351571 @default.
- W2015472235 hasConcept C74650414 @default.
- W2015472235 hasConcept C84655787 @default.
- W2015472235 hasConcept C90278072 @default.
- W2015472235 hasConceptScore W2015472235C104114177 @default.
- W2015472235 hasConceptScore W2015472235C121332964 @default.
- W2015472235 hasConceptScore W2015472235C12731421 @default.
- W2015472235 hasConceptScore W2015472235C145980571 @default.
- W2015472235 hasConceptScore W2015472235C157334427 @default.
- W2015472235 hasConceptScore W2015472235C182748727 @default.
- W2015472235 hasConceptScore W2015472235C19191322 @default.
- W2015472235 hasConceptScore W2015472235C196558001 @default.
- W2015472235 hasConceptScore W2015472235C203311528 @default.
- W2015472235 hasConceptScore W2015472235C2524010 @default.
- W2015472235 hasConceptScore W2015472235C33923547 @default.
- W2015472235 hasConceptScore W2015472235C38349280 @default.
- W2015472235 hasConceptScore W2015472235C57879066 @default.
- W2015472235 hasConceptScore W2015472235C71351571 @default.
- W2015472235 hasConceptScore W2015472235C74650414 @default.
- W2015472235 hasConceptScore W2015472235C84655787 @default.
- W2015472235 hasConceptScore W2015472235C90278072 @default.
- W2015472235 hasIssue "6" @default.
- W2015472235 hasLocation W20154722351 @default.
- W2015472235 hasOpenAccess W2015472235 @default.
- W2015472235 hasPrimaryLocation W20154722351 @default.
- W2015472235 hasRelatedWork W1963810038 @default.
- W2015472235 hasRelatedWork W1967829407 @default.
- W2015472235 hasRelatedWork W1980549437 @default.
- W2015472235 hasRelatedWork W2015472235 @default.
- W2015472235 hasRelatedWork W2021709791 @default.
- W2015472235 hasRelatedWork W2038507655 @default.
- W2015472235 hasRelatedWork W2110654974 @default.
- W2015472235 hasRelatedWork W2159617071 @default.
- W2015472235 hasRelatedWork W3197914425 @default.
- W2015472235 hasRelatedWork W4292544890 @default.
- W2015472235 hasVolume "5" @default.
- W2015472235 isParatext "false" @default.
- W2015472235 isRetracted "false" @default.
- W2015472235 magId "2015472235" @default.
- W2015472235 workType "article" @default.