Matches in SemOpenAlex for { <https://semopenalex.org/work/W2015536260> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W2015536260 abstract "Imaging biomarkers for AD are desirable for improved diagnosis and monitoring, as well as drug discovery. The Alzheimer's Disease Neuroimaging Initiative (ADNI) is a valuable resource for related investigations, providing longitudinal clinical and imaging data from patients with AD and mild cognitive impairment (MCI), as well as healthy controls (HC). ADNI data have been used to demonstrate the value of incorporating longitudinal information from MRI, but there has been no corresponding classification study involving longitudinal FDG-PET. We therefore investigate the value of combining baseline and month-12 FDG-PET information for classification. Image data are from 221 ADNI participants for whom baseline and month-12 images were available: 50 AD, 54 HC and 117 MCI, of whom 53 have progressed to AD (pMCI), whilst 64 so far remain stable (sMCI). Baseline and month-12 MRIs were automatically segmented into 83 anatomical regions. Regional signal intensities were extracted from baseline and month-12 FDG-PET images, and regional percentage changes in signal intensity over 12 months were calculated. Global variations in the cerebral metabolic rate of glucose between subjects were accounted for using a cluster covering areas of the brain that are relatively unaffected by AD. The regional features were provided to a support vector machine classifier, and robust estimates of classifier performance were assessed using bootstrap resampling. Highly significant increases in classification accuracy are achieved when using month-12 signal intensities compared to using baseline signal intensities. Accuracies increased from 81% to 86% for AD/HC, 71% to 79% for pMCI/HC, 73% to 79% for AD/sMCI, and 58% to 62% for pMCI/sMCI. More interestingly, further significant increases in accuracy may be achieved by combining month-12 signal intensities with the percentage changes over 12 months. Using this feature combination yields accuracies of 88% for AD/HC, 81% for pMCI/HC, 84% for AD/sMCI, and 63% for pMCI/sMCI. These results surpass many state-of-the-art image-based classification methods. This study demonstrates that information extracted from serial FDG-PET through regional analysis can accurately discriminate diagnostic groups, a finding that may be usefully applied in the diagnosis of AD, predicting disease course in individuals with MCI, and in the selection of participants for clinical trials. Reginal t - values for the comparison between AD patients (n = 50) healthy controls (n = 54) superimposed onto a sagital slice of a maximum probability brain atlas." @default.
- W2015536260 created "2016-06-24" @default.
- W2015536260 creator A5006461848 @default.
- W2015536260 creator A5011834074 @default.
- W2015536260 creator A5045287606 @default.
- W2015536260 creator A5083763339 @default.
- W2015536260 date "2011-07-01" @default.
- W2015536260 modified "2023-10-06" @default.
- W2015536260 title "P4-304: Multi-region analysis of longitudinal FDG-PET enables accurate Alzheimer's disease classification" @default.
- W2015536260 doi "https://doi.org/10.1016/j.jalz.2011.09.049" @default.
- W2015536260 hasPublicationYear "2011" @default.
- W2015536260 type Work @default.
- W2015536260 sameAs 2015536260 @default.
- W2015536260 citedByCount "0" @default.
- W2015536260 crossrefType "journal-article" @default.
- W2015536260 hasAuthorship W2015536260A5006461848 @default.
- W2015536260 hasAuthorship W2015536260A5011834074 @default.
- W2015536260 hasAuthorship W2015536260A5045287606 @default.
- W2015536260 hasAuthorship W2015536260A5083763339 @default.
- W2015536260 hasBestOaLocation W20155362601 @default.
- W2015536260 hasConcept C118552586 @default.
- W2015536260 hasConcept C126322002 @default.
- W2015536260 hasConcept C150921843 @default.
- W2015536260 hasConcept C153180895 @default.
- W2015536260 hasConcept C154945302 @default.
- W2015536260 hasConcept C2775842073 @default.
- W2015536260 hasConcept C2778373026 @default.
- W2015536260 hasConcept C2779134260 @default.
- W2015536260 hasConcept C2984915365 @default.
- W2015536260 hasConcept C2989005 @default.
- W2015536260 hasConcept C41008148 @default.
- W2015536260 hasConcept C58693492 @default.
- W2015536260 hasConcept C71924100 @default.
- W2015536260 hasConceptScore W2015536260C118552586 @default.
- W2015536260 hasConceptScore W2015536260C126322002 @default.
- W2015536260 hasConceptScore W2015536260C150921843 @default.
- W2015536260 hasConceptScore W2015536260C153180895 @default.
- W2015536260 hasConceptScore W2015536260C154945302 @default.
- W2015536260 hasConceptScore W2015536260C2775842073 @default.
- W2015536260 hasConceptScore W2015536260C2778373026 @default.
- W2015536260 hasConceptScore W2015536260C2779134260 @default.
- W2015536260 hasConceptScore W2015536260C2984915365 @default.
- W2015536260 hasConceptScore W2015536260C2989005 @default.
- W2015536260 hasConceptScore W2015536260C41008148 @default.
- W2015536260 hasConceptScore W2015536260C58693492 @default.
- W2015536260 hasConceptScore W2015536260C71924100 @default.
- W2015536260 hasIssue "4S_Part_24" @default.
- W2015536260 hasLocation W20155362601 @default.
- W2015536260 hasOpenAccess W2015536260 @default.
- W2015536260 hasPrimaryLocation W20155362601 @default.
- W2015536260 hasRelatedWork W1482496268 @default.
- W2015536260 hasRelatedWork W1984540691 @default.
- W2015536260 hasRelatedWork W2037880913 @default.
- W2015536260 hasRelatedWork W2044614452 @default.
- W2015536260 hasRelatedWork W2077875975 @default.
- W2015536260 hasRelatedWork W2231131932 @default.
- W2015536260 hasRelatedWork W2802655428 @default.
- W2015536260 hasRelatedWork W2803278045 @default.
- W2015536260 hasRelatedWork W4232967606 @default.
- W2015536260 hasRelatedWork W4362576321 @default.
- W2015536260 hasVolume "7" @default.
- W2015536260 isParatext "false" @default.
- W2015536260 isRetracted "false" @default.
- W2015536260 magId "2015536260" @default.
- W2015536260 workType "article" @default.