Matches in SemOpenAlex for { <https://semopenalex.org/work/W2015603907> ?p ?o ?g. }
- W2015603907 endingPage "1035" @default.
- W2015603907 startingPage "1023" @default.
- W2015603907 abstract "Although the high dimensionality of hyperspectral data increases the separability of land covers, it is difficult to distinguish certain classes using only the spectral information due to the widespread mixed pixels and small sample size problems. Three-dimensional Gabor wavelet transform takes the entire hyperspectral data cube as a tensor, captures the joint spectral-spatial structures very well and has shown great potential to improve classification accuracies. However, much redundancy exists in the extracted huge amount of Gabor features, which inevitably degrades the efficiency of the method. To make matters worse, according to the Hughes phenomenon, the less informative bands/features may sacrifice the classification accuracy. In this paper, a two-stage feature selection framework, Affinity Propagation-Gabor-Conditional Mutual Information (abbreviated as AP-Gabor-CMI), is proposed to deal with the problems, which chooses the most important features before and after the Gabor wavelet-based feature extraction procedure. Specifically, the first stage picks out the most distinctive bands from the original hyperspectral data through complex wavelet structural similarity (CW-SSIM) index based affinity propagation clustering algorithm. After applying the Gabor wavelet-based feature extraction on the chosen bands, the second stage selects the most discriminative features from them by means of conditional mutual information-based feature ranking and elimination. Experimental results on three real hyperspectral data sets demonstrate the advantages of the proposed two-stage feature selection framework and the superiority of AP-Gabor-CMI over state-of-the-art methods when only few labeled samples per class are available." @default.
- W2015603907 created "2016-06-24" @default.
- W2015603907 creator A5019313200 @default.
- W2015603907 creator A5033672865 @default.
- W2015603907 creator A5035753061 @default.
- W2015603907 creator A5052762681 @default.
- W2015603907 date "2014-04-01" @default.
- W2015603907 modified "2023-09-23" @default.
- W2015603907 title "A Two-Stage Feature Selection Framework for Hyperspectral Image Classification Using Few Labeled Samples" @default.
- W2015603907 cites W1964335437 @default.
- W2015603907 cites W1965985567 @default.
- W2015603907 cites W1968589019 @default.
- W2015603907 cites W1972963882 @default.
- W2015603907 cites W1973207880 @default.
- W2015603907 cites W1979743748 @default.
- W2015603907 cites W1995875735 @default.
- W2015603907 cites W2001298023 @default.
- W2015603907 cites W2002747721 @default.
- W2015603907 cites W2013793344 @default.
- W2015603907 cites W2040589129 @default.
- W2015603907 cites W2045360958 @default.
- W2015603907 cites W2047029347 @default.
- W2015603907 cites W2049694710 @default.
- W2015603907 cites W2054942162 @default.
- W2015603907 cites W2057540576 @default.
- W2015603907 cites W2067983477 @default.
- W2015603907 cites W2069231830 @default.
- W2015603907 cites W2097915756 @default.
- W2015603907 cites W2098684142 @default.
- W2015603907 cites W2102372511 @default.
- W2015603907 cites W2105386417 @default.
- W2015603907 cites W2107790757 @default.
- W2015603907 cites W2113513024 @default.
- W2015603907 cites W2127006916 @default.
- W2015603907 cites W2127808402 @default.
- W2015603907 cites W2130414230 @default.
- W2015603907 cites W2131697388 @default.
- W2015603907 cites W2131725398 @default.
- W2015603907 cites W2132637576 @default.
- W2015603907 cites W2138038253 @default.
- W2015603907 cites W2139987077 @default.
- W2015603907 cites W2142339246 @default.
- W2015603907 cites W2144966944 @default.
- W2015603907 cites W2148215686 @default.
- W2015603907 cites W2148791530 @default.
- W2015603907 cites W2150566919 @default.
- W2015603907 cites W2150990614 @default.
- W2015603907 cites W2156932943 @default.
- W2015603907 cites W2158400785 @default.
- W2015603907 cites W2163346236 @default.
- W2015603907 cites W2164437025 @default.
- W2015603907 cites W2165232124 @default.
- W2015603907 cites W2166229804 @default.
- W2015603907 cites W2168809519 @default.
- W2015603907 cites W2170407643 @default.
- W2015603907 cites W2171566342 @default.
- W2015603907 cites W2506684654 @default.
- W2015603907 cites W3150214740 @default.
- W2015603907 doi "https://doi.org/10.1109/jstars.2013.2282161" @default.
- W2015603907 hasPublicationYear "2014" @default.
- W2015603907 type Work @default.
- W2015603907 sameAs 2015603907 @default.
- W2015603907 citedByCount "40" @default.
- W2015603907 countsByYear W20156039072014 @default.
- W2015603907 countsByYear W20156039072015 @default.
- W2015603907 countsByYear W20156039072016 @default.
- W2015603907 countsByYear W20156039072017 @default.
- W2015603907 countsByYear W20156039072018 @default.
- W2015603907 countsByYear W20156039072019 @default.
- W2015603907 countsByYear W20156039072020 @default.
- W2015603907 countsByYear W20156039072021 @default.
- W2015603907 countsByYear W20156039072022 @default.
- W2015603907 countsByYear W20156039072023 @default.
- W2015603907 crossrefType "journal-article" @default.
- W2015603907 hasAuthorship W2015603907A5019313200 @default.
- W2015603907 hasAuthorship W2015603907A5033672865 @default.
- W2015603907 hasAuthorship W2015603907A5035753061 @default.
- W2015603907 hasAuthorship W2015603907A5052762681 @default.
- W2015603907 hasConcept C111030470 @default.
- W2015603907 hasConcept C136902061 @default.
- W2015603907 hasConcept C138885662 @default.
- W2015603907 hasConcept C148483581 @default.
- W2015603907 hasConcept C152139883 @default.
- W2015603907 hasConcept C153180895 @default.
- W2015603907 hasConcept C154945302 @default.
- W2015603907 hasConcept C159078339 @default.
- W2015603907 hasConcept C196216189 @default.
- W2015603907 hasConcept C2776401178 @default.
- W2015603907 hasConcept C33923547 @default.
- W2015603907 hasConcept C41008148 @default.
- W2015603907 hasConcept C41895202 @default.
- W2015603907 hasConcept C46286280 @default.
- W2015603907 hasConcept C47432892 @default.
- W2015603907 hasConcept C52622490 @default.
- W2015603907 hasConcept C70518039 @default.
- W2015603907 hasConcept C97931131 @default.
- W2015603907 hasConceptScore W2015603907C111030470 @default.
- W2015603907 hasConceptScore W2015603907C136902061 @default.