Matches in SemOpenAlex for { <https://semopenalex.org/work/W2015642309> ?p ?o ?g. }
- W2015642309 endingPage "205" @default.
- W2015642309 startingPage "195" @default.
- W2015642309 abstract "We study the impact on inventory of an unexpected, non-linear, time-dependent demand and present the exact solutions over time to the supply chain equations without requiring any approximations. We begin by imposing a boundary condition of stability at infinity, from which we derive expressions for the estimated demand and the target work in progress when the demand is time-dependent. The resulting inventory equation is solved in terms of the Lambert modes with all of the demand non-linearities confined to the pre-shape function. The series solution is exact, and all terms are reasonably easy to calculate, so users can determine the inventory behavior to any desired precision. To illustrate, we solve the equations for a non-linear, quadratic time-dependence in the demand. For practical use, only a few terms in the series are required, a proposition illustrated by the For All Practical Purposes (FAPP) solution. While the paper provides a theoretical foundation, the result is decidedly practical: An accurate and reasonably easy-to-implement model that companies can use to analyze the impact of non-linear, time-dependent demands." @default.
- W2015642309 created "2016-06-24" @default.
- W2015642309 creator A5030406709 @default.
- W2015642309 creator A5044073625 @default.
- W2015642309 creator A5069493278 @default.
- W2015642309 date "2014-05-01" @default.
- W2015642309 modified "2023-09-26" @default.
- W2015642309 title "Exact solutions to the supply chain equations for arbitrary, time-dependent demands" @default.
- W2015642309 cites W102324627 @default.
- W2015642309 cites W1965128238 @default.
- W2015642309 cites W1969216601 @default.
- W2015642309 cites W1970860694 @default.
- W2015642309 cites W1978581434 @default.
- W2015642309 cites W1984155548 @default.
- W2015642309 cites W1986783901 @default.
- W2015642309 cites W1989460349 @default.
- W2015642309 cites W2002976749 @default.
- W2015642309 cites W2005432047 @default.
- W2015642309 cites W2018705667 @default.
- W2015642309 cites W2031337097 @default.
- W2015642309 cites W2032267146 @default.
- W2015642309 cites W2039400833 @default.
- W2015642309 cites W2046268490 @default.
- W2015642309 cites W2047111871 @default.
- W2015642309 cites W2056801379 @default.
- W2015642309 cites W2062977416 @default.
- W2015642309 cites W2068728923 @default.
- W2015642309 cites W2069729888 @default.
- W2015642309 cites W2074038385 @default.
- W2015642309 cites W2075824666 @default.
- W2015642309 cites W2075962932 @default.
- W2015642309 cites W2082981110 @default.
- W2015642309 cites W2084843102 @default.
- W2015642309 cites W2089822798 @default.
- W2015642309 cites W2095628261 @default.
- W2015642309 cites W2098860011 @default.
- W2015642309 cites W2099461641 @default.
- W2015642309 cites W2102860710 @default.
- W2015642309 cites W2104925392 @default.
- W2015642309 cites W2105918172 @default.
- W2015642309 cites W2106937514 @default.
- W2015642309 cites W2123594576 @default.
- W2015642309 cites W2137656647 @default.
- W2015642309 cites W2143843208 @default.
- W2015642309 cites W2145118875 @default.
- W2015642309 cites W2171166043 @default.
- W2015642309 cites W2171368602 @default.
- W2015642309 cites W2171820546 @default.
- W2015642309 doi "https://doi.org/10.1016/j.ijpe.2013.10.015" @default.
- W2015642309 hasPublicationYear "2014" @default.
- W2015642309 type Work @default.
- W2015642309 sameAs 2015642309 @default.
- W2015642309 citedByCount "6" @default.
- W2015642309 countsByYear W20156423092015 @default.
- W2015642309 countsByYear W20156423092017 @default.
- W2015642309 countsByYear W20156423092018 @default.
- W2015642309 crossrefType "journal-article" @default.
- W2015642309 hasAuthorship W2015642309A5030406709 @default.
- W2015642309 hasAuthorship W2015642309A5044073625 @default.
- W2015642309 hasAuthorship W2015642309A5069493278 @default.
- W2015642309 hasConcept C108713360 @default.
- W2015642309 hasConcept C112972136 @default.
- W2015642309 hasConcept C119857082 @default.
- W2015642309 hasConcept C126255220 @default.
- W2015642309 hasConcept C127413603 @default.
- W2015642309 hasConcept C129844170 @default.
- W2015642309 hasConcept C134306372 @default.
- W2015642309 hasConcept C14036430 @default.
- W2015642309 hasConcept C143724316 @default.
- W2015642309 hasConcept C151730666 @default.
- W2015642309 hasConcept C17744445 @default.
- W2015642309 hasConcept C18762648 @default.
- W2015642309 hasConcept C199539241 @default.
- W2015642309 hasConcept C2524010 @default.
- W2015642309 hasConcept C28826006 @default.
- W2015642309 hasConcept C33923547 @default.
- W2015642309 hasConcept C41008148 @default.
- W2015642309 hasConcept C520416788 @default.
- W2015642309 hasConcept C7321624 @default.
- W2015642309 hasConcept C78458016 @default.
- W2015642309 hasConcept C78519656 @default.
- W2015642309 hasConcept C86803240 @default.
- W2015642309 hasConceptScore W2015642309C108713360 @default.
- W2015642309 hasConceptScore W2015642309C112972136 @default.
- W2015642309 hasConceptScore W2015642309C119857082 @default.
- W2015642309 hasConceptScore W2015642309C126255220 @default.
- W2015642309 hasConceptScore W2015642309C127413603 @default.
- W2015642309 hasConceptScore W2015642309C129844170 @default.
- W2015642309 hasConceptScore W2015642309C134306372 @default.
- W2015642309 hasConceptScore W2015642309C14036430 @default.
- W2015642309 hasConceptScore W2015642309C143724316 @default.
- W2015642309 hasConceptScore W2015642309C151730666 @default.
- W2015642309 hasConceptScore W2015642309C17744445 @default.
- W2015642309 hasConceptScore W2015642309C18762648 @default.
- W2015642309 hasConceptScore W2015642309C199539241 @default.
- W2015642309 hasConceptScore W2015642309C2524010 @default.
- W2015642309 hasConceptScore W2015642309C28826006 @default.
- W2015642309 hasConceptScore W2015642309C33923547 @default.