Matches in SemOpenAlex for { <https://semopenalex.org/work/W2015663485> ?p ?o ?g. }
- W2015663485 endingPage "4044" @default.
- W2015663485 startingPage "4035" @default.
- W2015663485 abstract "Stark hole-burning spectroscopy at 1.8 K was used to determine the dipole moment changes fΔμ (f, the local field correction factor) for the B800 absorption band of the light harvesting 2 (LH2) complex of Rhodobacter sphaeroides, Rhodopseudomonas acidophila (strain 10050), and Rhodospirillum molischianum. Hole-burning values of fΔμ for the lowest energy exciton level (B870) associated with LH2's B850 band have recently been reported (Rätsep et al. Spectrochim. Acta, in press). Values for the lowest energy exciton level (B896) associated with the B875 band of the LH1 complex of Rb. sphaeroides (wild-type chromatophores and an LH1-only mutant) and the 825 nm band of the bacteriochlorophyll a (FMO) antenna complex of Chlorobium tepidum are also reported. For each band, fΔμ was determined for burn laser polarization parallel and perpendicular to the Stark field ES and several burn frequencies. The dependencies on laser polarization and burn frequency are typically quite weak. Importantly, fΔμ values for the above bands are small, falling in the range ∼0.5−1.2 D, with the lowest and highest values associated with the 825 nm band of the FMO complex and B800 band of the LH2 complex, respectively. For the B896 band of the LH1 complex, fΔμ ≈ 0.8 D. Such small values are consistent with the very weak linear electron−phonon coupling of antenna protein complexes as determined by hole-burning spectroscopy. Overall, the values for fΔμ from classical Stark modulation (CSM) studies (Gottfried et al. Biochim. Biophys. Acta 1991, 1059, 63; Beekman et al. J. Phys. Chem. B 1997, 101, 7293) are larger, in the cases of B850 and B875, by a factor of 3−4. (In CSM spectroscopy, one analyzes the response of the entire absorption band to the external field.) Discussion of the discrepancies between the two Stark techniques is given. It appears that difficulties inherent to the analysis procedure of CSM spectroscopy can lead to unreliable values for dipole moment and polarizability changes associated with absorption bands of photosynthetic complexes, especially when several excitonic levels contribute to the band, e.g., B850 and B875. An explanation for the small hole-burning values of fΔμ for the B870 and B896 levels associated with Cn cyclic arrays of strongly coupled BChl a dimers is given based on structural, symmetry, and energy disorder considerations. A key point is that, in the absence of energy disorder, the component of Δμj (j labeling the exciton level) perpendicular to the Cn axis is zero. Energy disorder, which destroys the Cn symmetry and leads to localization effects results in nonzero values which may depend on j when the protein-induced contribution to Δμj is taken into account." @default.
- W2015663485 created "2016-06-24" @default.
- W2015663485 creator A5021026152 @default.
- W2015663485 creator A5027492164 @default.
- W2015663485 creator A5041515402 @default.
- W2015663485 creator A5044938671 @default.
- W2015663485 creator A5053747313 @default.
- W2015663485 creator A5084019740 @default.
- W2015663485 date "1998-04-22" @default.
- W2015663485 modified "2023-10-18" @default.
- W2015663485 title "Stark Hole-Burning Studies of Three Photosynthetic Complexes" @default.
- W2015663485 cites W1966378659 @default.
- W2015663485 cites W1969429591 @default.
- W2015663485 cites W1973823342 @default.
- W2015663485 cites W1975938701 @default.
- W2015663485 cites W1977660310 @default.
- W2015663485 cites W1978821216 @default.
- W2015663485 cites W1982645807 @default.
- W2015663485 cites W1983769340 @default.
- W2015663485 cites W1985574205 @default.
- W2015663485 cites W1986934560 @default.
- W2015663485 cites W1989933187 @default.
- W2015663485 cites W1990514845 @default.
- W2015663485 cites W1993914107 @default.
- W2015663485 cites W1995219058 @default.
- W2015663485 cites W2002577727 @default.
- W2015663485 cites W2011470412 @default.
- W2015663485 cites W2014176882 @default.
- W2015663485 cites W2016584600 @default.
- W2015663485 cites W2017030353 @default.
- W2015663485 cites W2017740993 @default.
- W2015663485 cites W2023813727 @default.
- W2015663485 cites W2025330626 @default.
- W2015663485 cites W2031927089 @default.
- W2015663485 cites W2032960273 @default.
- W2015663485 cites W2037994443 @default.
- W2015663485 cites W2042476669 @default.
- W2015663485 cites W2045465579 @default.
- W2015663485 cites W2045664105 @default.
- W2015663485 cites W2048504021 @default.
- W2015663485 cites W2049066170 @default.
- W2015663485 cites W2049330041 @default.
- W2015663485 cites W2053902526 @default.
- W2015663485 cites W2055673314 @default.
- W2015663485 cites W2062688160 @default.
- W2015663485 cites W2063044668 @default.
- W2015663485 cites W2072785138 @default.
- W2015663485 cites W2075972452 @default.
- W2015663485 cites W2078284024 @default.
- W2015663485 cites W2081838726 @default.
- W2015663485 cites W2081862329 @default.
- W2015663485 cites W2082737839 @default.
- W2015663485 cites W2086645323 @default.
- W2015663485 cites W2086850957 @default.
- W2015663485 cites W2089054428 @default.
- W2015663485 cites W2095038145 @default.
- W2015663485 cites W2095055087 @default.
- W2015663485 cites W2095291250 @default.
- W2015663485 cites W2109824262 @default.
- W2015663485 cites W2125657028 @default.
- W2015663485 cites W2146818291 @default.
- W2015663485 cites W2320522546 @default.
- W2015663485 cites W2987232707 @default.
- W2015663485 doi "https://doi.org/10.1021/jp980421r" @default.
- W2015663485 hasPublicationYear "1998" @default.
- W2015663485 type Work @default.
- W2015663485 sameAs 2015663485 @default.
- W2015663485 citedByCount "50" @default.
- W2015663485 countsByYear W20156634852012 @default.
- W2015663485 countsByYear W20156634852013 @default.
- W2015663485 countsByYear W20156634852014 @default.
- W2015663485 countsByYear W20156634852015 @default.
- W2015663485 countsByYear W20156634852016 @default.
- W2015663485 countsByYear W20156634852020 @default.
- W2015663485 countsByYear W20156634852022 @default.
- W2015663485 crossrefType "journal-article" @default.
- W2015663485 hasAuthorship W2015663485A5021026152 @default.
- W2015663485 hasAuthorship W2015663485A5027492164 @default.
- W2015663485 hasAuthorship W2015663485A5041515402 @default.
- W2015663485 hasAuthorship W2015663485A5044938671 @default.
- W2015663485 hasAuthorship W2015663485A5053747313 @default.
- W2015663485 hasAuthorship W2015663485A5084019740 @default.
- W2015663485 hasConcept C119824511 @default.
- W2015663485 hasConcept C120665830 @default.
- W2015663485 hasConcept C121332964 @default.
- W2015663485 hasConcept C123669783 @default.
- W2015663485 hasConcept C1276947 @default.
- W2015663485 hasConcept C173523689 @default.
- W2015663485 hasConcept C17729963 @default.
- W2015663485 hasConcept C178790620 @default.
- W2015663485 hasConcept C183688256 @default.
- W2015663485 hasConcept C184779094 @default.
- W2015663485 hasConcept C185592680 @default.
- W2015663485 hasConcept C188231169 @default.
- W2015663485 hasConcept C26873012 @default.
- W2015663485 hasConcept C2777897970 @default.
- W2015663485 hasConcept C2779162199 @default.
- W2015663485 hasConcept C2780784151 @default.