Matches in SemOpenAlex for { <https://semopenalex.org/work/W2015709018> ?p ?o ?g. }
- W2015709018 endingPage "1512" @default.
- W2015709018 startingPage "1506" @default.
- W2015709018 abstract "The aim of the present study was to evaluate the performance of 2 different multivariate statistical methods and artificial neural networks (ANNs) in predicting the mortality of hemorrhagic and ischemic patients within the first 10 days after stroke.The multilayer perceptron (MLP) ANN model and multivariate statistical methods (multivariate discriminant analysis [MDA] and logistic regression analysis [LRA]) have been used to predict acute stroke mortality. The data of total 570 patients (230 hemorrhagic and 340 ischemic stroke), who were admitted to the hospital within the first 24 hours after stroke onset, have been used to develop prediction models. The factors affecting the prognosis were used as inputs for prediction models. Survival or death status of the patients was taken as output of the models.For the MLP method, the accuracies were 99.9% in a training data set and 80.9% in a testing data set for the hemorrhagic group, whereas 97.8% and 75.9% for the ischemic group, respectively. For the MDA method, the training and testing performances were 89.8%, 87.8% and 80.6%, 79.7% for hemorrhagic and ischemic groups, respectively. For the LRA method, the training and testing performances for the hemorrhagic group were 89.7% and 86.1%, and for the ischemic group were 81.7% and 80.9%, respectively.Training and test performances yielded different results for ischemic and hemorrhagic groups. MLP method was most successful for the training phase, whereas LRA and MDA methods were successful for the test phase. In the hemorrhagic group, higher prediction performances were achieved for both training and testing phases." @default.
- W2015709018 created "2016-06-24" @default.
- W2015709018 creator A5017988475 @default.
- W2015709018 creator A5030816843 @default.
- W2015709018 creator A5079671396 @default.
- W2015709018 creator A5090409318 @default.
- W2015709018 date "2014-07-01" @default.
- W2015709018 modified "2023-10-01" @default.
- W2015709018 title "Predicting 10-day Mortality in Patients with Strokes Using Neural Networks and Multivariate Statistical Methods" @default.
- W2015709018 cites W1498436455 @default.
- W2015709018 cites W1926513477 @default.
- W2015709018 cites W2015983646 @default.
- W2015709018 cites W2022230804 @default.
- W2015709018 cites W2031765536 @default.
- W2015709018 cites W2034967036 @default.
- W2015709018 cites W2035394769 @default.
- W2015709018 cites W2055071871 @default.
- W2015709018 cites W2065546970 @default.
- W2015709018 cites W2068405009 @default.
- W2015709018 cites W2070558888 @default.
- W2015709018 cites W2111886418 @default.
- W2015709018 cites W2122684851 @default.
- W2015709018 cites W2124675680 @default.
- W2015709018 cites W2161099598 @default.
- W2015709018 cites W2321608737 @default.
- W2015709018 cites W297313844 @default.
- W2015709018 cites W4252059980 @default.
- W2015709018 doi "https://doi.org/10.1016/j.jstrokecerebrovasdis.2013.12.018" @default.
- W2015709018 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24674954" @default.
- W2015709018 hasPublicationYear "2014" @default.
- W2015709018 type Work @default.
- W2015709018 sameAs 2015709018 @default.
- W2015709018 citedByCount "27" @default.
- W2015709018 countsByYear W20157090182016 @default.
- W2015709018 countsByYear W20157090182017 @default.
- W2015709018 countsByYear W20157090182018 @default.
- W2015709018 countsByYear W20157090182019 @default.
- W2015709018 countsByYear W20157090182020 @default.
- W2015709018 countsByYear W20157090182021 @default.
- W2015709018 countsByYear W20157090182022 @default.
- W2015709018 countsByYear W20157090182023 @default.
- W2015709018 crossrefType "journal-article" @default.
- W2015709018 hasAuthorship W2015709018A5017988475 @default.
- W2015709018 hasAuthorship W2015709018A5030816843 @default.
- W2015709018 hasAuthorship W2015709018A5079671396 @default.
- W2015709018 hasAuthorship W2015709018A5090409318 @default.
- W2015709018 hasConcept C119857082 @default.
- W2015709018 hasConcept C126322002 @default.
- W2015709018 hasConcept C127413603 @default.
- W2015709018 hasConcept C151956035 @default.
- W2015709018 hasConcept C154945302 @default.
- W2015709018 hasConcept C161584116 @default.
- W2015709018 hasConcept C169903167 @default.
- W2015709018 hasConcept C179717631 @default.
- W2015709018 hasConcept C2780645631 @default.
- W2015709018 hasConcept C3020199598 @default.
- W2015709018 hasConcept C38180746 @default.
- W2015709018 hasConcept C41008148 @default.
- W2015709018 hasConcept C50644808 @default.
- W2015709018 hasConcept C541997718 @default.
- W2015709018 hasConcept C69738355 @default.
- W2015709018 hasConcept C71924100 @default.
- W2015709018 hasConcept C78519656 @default.
- W2015709018 hasConceptScore W2015709018C119857082 @default.
- W2015709018 hasConceptScore W2015709018C126322002 @default.
- W2015709018 hasConceptScore W2015709018C127413603 @default.
- W2015709018 hasConceptScore W2015709018C151956035 @default.
- W2015709018 hasConceptScore W2015709018C154945302 @default.
- W2015709018 hasConceptScore W2015709018C161584116 @default.
- W2015709018 hasConceptScore W2015709018C169903167 @default.
- W2015709018 hasConceptScore W2015709018C179717631 @default.
- W2015709018 hasConceptScore W2015709018C2780645631 @default.
- W2015709018 hasConceptScore W2015709018C3020199598 @default.
- W2015709018 hasConceptScore W2015709018C38180746 @default.
- W2015709018 hasConceptScore W2015709018C41008148 @default.
- W2015709018 hasConceptScore W2015709018C50644808 @default.
- W2015709018 hasConceptScore W2015709018C541997718 @default.
- W2015709018 hasConceptScore W2015709018C69738355 @default.
- W2015709018 hasConceptScore W2015709018C71924100 @default.
- W2015709018 hasConceptScore W2015709018C78519656 @default.
- W2015709018 hasIssue "6" @default.
- W2015709018 hasLocation W20157090181 @default.
- W2015709018 hasLocation W20157090182 @default.
- W2015709018 hasOpenAccess W2015709018 @default.
- W2015709018 hasPrimaryLocation W20157090181 @default.
- W2015709018 hasRelatedWork W1531310768 @default.
- W2015709018 hasRelatedWork W1974184024 @default.
- W2015709018 hasRelatedWork W2015709018 @default.
- W2015709018 hasRelatedWork W2087179002 @default.
- W2015709018 hasRelatedWork W2129945984 @default.
- W2015709018 hasRelatedWork W2310730027 @default.
- W2015709018 hasRelatedWork W2393274773 @default.
- W2015709018 hasRelatedWork W2402900412 @default.
- W2015709018 hasRelatedWork W2807400484 @default.
- W2015709018 hasRelatedWork W4380190129 @default.
- W2015709018 hasVolume "23" @default.
- W2015709018 isParatext "false" @default.
- W2015709018 isRetracted "false" @default.