Matches in SemOpenAlex for { <https://semopenalex.org/work/W2015764595> ?p ?o ?g. }
- W2015764595 endingPage "201" @default.
- W2015764595 startingPage "191" @default.
- W2015764595 abstract "Event-based runoff forecasting for 1, 2, 4 and 8 time steps ahead, based on rainfall and flow data of ten storm events for an asphalt plane, have been investigated by the Artificial Neural Network (ANN) technique. The investigation includes ANN models with three different types of inputs: (i) rainfall only, (ii) discharge only and (iii) a combination of rainfall and discharge. The results show that inclusion of discharge as an input in general, improved the performance of the ANN. However, model improvements were less significant for longer forecast lead times. Significant time shift errors in the predicted hydrographs were observed for ANN models that used discharge only as input. Although ANN models with the smallest time shift errors were models that included rainfall as inputs, these models produced hydrographs that were noisier. ANN model results were also evaluated by comparisons with results from the kinematic wave (KW) and autoregressive moving average (ARMA) models. It was found that ANN model forecasts compared favorably with runoff predictions by the KW and ARMA models. Specifically, ANN models that included discharge as input were superior to the KW model for all forecast ranges. However, the inclusion of discharge as an input to the ANN models implies that discharge measurements must be available during the model simulation stage; the KW model does not have this requirement. ANN models that did not include discharge as an input were better at long-term forecasts but poorer at short-term forecasts, when compared to the KW model. The poorer performance of the KW model at longer lead times is probably due to errors in the forecast rainfall used." @default.
- W2015764595 created "2016-06-24" @default.
- W2015764595 creator A5057619025 @default.
- W2015764595 creator A5080846529 @default.
- W2015764595 date "2011-02-01" @default.
- W2015764595 modified "2023-09-27" @default.
- W2015764595 title "Runoff forecasting for an asphalt plane by Artificial Neural Networks and comparisons with kinematic wave and autoregressive moving average models" @default.
- W2015764595 cites W1967895196 @default.
- W2015764595 cites W1970141875 @default.
- W2015764595 cites W1981470161 @default.
- W2015764595 cites W1982590625 @default.
- W2015764595 cites W1984118895 @default.
- W2015764595 cites W2009257958 @default.
- W2015764595 cites W2011433625 @default.
- W2015764595 cites W2011963800 @default.
- W2015764595 cites W2013580077 @default.
- W2015764595 cites W2017198208 @default.
- W2015764595 cites W2017653465 @default.
- W2015764595 cites W2029719981 @default.
- W2015764595 cites W2031292142 @default.
- W2015764595 cites W2033904036 @default.
- W2015764595 cites W2034490806 @default.
- W2015764595 cites W2035134507 @default.
- W2015764595 cites W2036194899 @default.
- W2015764595 cites W2047526842 @default.
- W2015764595 cites W2060349575 @default.
- W2015764595 cites W2062116877 @default.
- W2015764595 cites W2073540355 @default.
- W2015764595 cites W2077894979 @default.
- W2015764595 cites W2083856799 @default.
- W2015764595 cites W2089128787 @default.
- W2015764595 cites W2092966701 @default.
- W2015764595 cites W2093762337 @default.
- W2015764595 cites W2094312930 @default.
- W2015764595 cites W2104241170 @default.
- W2015764595 cites W2131047005 @default.
- W2015764595 cites W2145586089 @default.
- W2015764595 cites W2153637954 @default.
- W2015764595 doi "https://doi.org/10.1016/j.jhydrol.2010.11.030" @default.
- W2015764595 hasPublicationYear "2011" @default.
- W2015764595 type Work @default.
- W2015764595 sameAs 2015764595 @default.
- W2015764595 citedByCount "35" @default.
- W2015764595 countsByYear W20157645952012 @default.
- W2015764595 countsByYear W20157645952013 @default.
- W2015764595 countsByYear W20157645952014 @default.
- W2015764595 countsByYear W20157645952015 @default.
- W2015764595 countsByYear W20157645952016 @default.
- W2015764595 countsByYear W20157645952017 @default.
- W2015764595 countsByYear W20157645952018 @default.
- W2015764595 countsByYear W20157645952019 @default.
- W2015764595 countsByYear W20157645952020 @default.
- W2015764595 countsByYear W20157645952021 @default.
- W2015764595 countsByYear W20157645952022 @default.
- W2015764595 countsByYear W20157645952023 @default.
- W2015764595 crossrefType "journal-article" @default.
- W2015764595 hasAuthorship W2015764595A5057619025 @default.
- W2015764595 hasAuthorship W2015764595A5080846529 @default.
- W2015764595 hasConcept C105795698 @default.
- W2015764595 hasConcept C119857082 @default.
- W2015764595 hasConcept C121332964 @default.
- W2015764595 hasConcept C153294291 @default.
- W2015764595 hasConcept C154936535 @default.
- W2015764595 hasConcept C159877910 @default.
- W2015764595 hasConcept C18903297 @default.
- W2015764595 hasConcept C33923547 @default.
- W2015764595 hasConcept C39432304 @default.
- W2015764595 hasConcept C41008148 @default.
- W2015764595 hasConcept C43978264 @default.
- W2015764595 hasConcept C50477045 @default.
- W2015764595 hasConcept C50644808 @default.
- W2015764595 hasConcept C74883015 @default.
- W2015764595 hasConcept C86803240 @default.
- W2015764595 hasConceptScore W2015764595C105795698 @default.
- W2015764595 hasConceptScore W2015764595C119857082 @default.
- W2015764595 hasConceptScore W2015764595C121332964 @default.
- W2015764595 hasConceptScore W2015764595C153294291 @default.
- W2015764595 hasConceptScore W2015764595C154936535 @default.
- W2015764595 hasConceptScore W2015764595C159877910 @default.
- W2015764595 hasConceptScore W2015764595C18903297 @default.
- W2015764595 hasConceptScore W2015764595C33923547 @default.
- W2015764595 hasConceptScore W2015764595C39432304 @default.
- W2015764595 hasConceptScore W2015764595C41008148 @default.
- W2015764595 hasConceptScore W2015764595C43978264 @default.
- W2015764595 hasConceptScore W2015764595C50477045 @default.
- W2015764595 hasConceptScore W2015764595C50644808 @default.
- W2015764595 hasConceptScore W2015764595C74883015 @default.
- W2015764595 hasConceptScore W2015764595C86803240 @default.
- W2015764595 hasIssue "3-4" @default.
- W2015764595 hasLocation W20157645951 @default.
- W2015764595 hasOpenAccess W2015764595 @default.
- W2015764595 hasPrimaryLocation W20157645951 @default.
- W2015764595 hasRelatedWork W1966190258 @default.
- W2015764595 hasRelatedWork W1994526775 @default.
- W2015764595 hasRelatedWork W1997810794 @default.
- W2015764595 hasRelatedWork W2069328629 @default.
- W2015764595 hasRelatedWork W2070017465 @default.
- W2015764595 hasRelatedWork W2095334919 @default.