Matches in SemOpenAlex for { <https://semopenalex.org/work/W2015784582> ?p ?o ?g. }
- W2015784582 endingPage "189" @default.
- W2015784582 startingPage "178" @default.
- W2015784582 abstract "Atopic dermatitis (AD) is a common pruritic and chronically relapsing inflammatory skin disease. The pathophysiology of AD includes disturbed skin barrier functions, frequent allergic responses against allergens, defects in the antimicrobial immune defense, and a genetic predisposition. In this review we summarize advances in our understanding of the complex interdependent network of members of the rapidly growing protein superfamilies of cytokines and chemokines that lead to the development of AD. Atopic dermatitis (AD) is a common pruritic and chronically relapsing inflammatory skin disease. The pathophysiology of AD includes disturbed skin barrier functions, frequent allergic responses against allergens, defects in the antimicrobial immune defense, and a genetic predisposition. In this review we summarize advances in our understanding of the complex interdependent network of members of the rapidly growing protein superfamilies of cytokines and chemokines that lead to the development of AD. Atopic dermatitis (AD) is a common pruritic and chronically relapsing inflammatory skin disease with a steadily increasing prevalence. Endogenous, as well as exogenous, factors play a role in the manifestation of this disease, which has a serious effect on patients, their families, and socioeconomic aspects of life. The pathophysiology of AD includes a disturbed skin barrier function (for review, see article by Cork et al1Cork M.J. Robinson D.A. Vasilopoulos Y. Ferguson A. Moustafa M. MacGowan A. et al.New perspectives on epidermal barrier dysfunction in atopic dermatitis: gene–environment interactions.J Allergy Clin Immunol. 2006; 118: 3-21Abstract Full Text Full Text PDF PubMed Scopus (416) Google Scholar in this issue of the Journal), frequent allergic responses against allergens, defects in the antimicrobial immune defense, and a genetic predisposition. Recent studies provide insights into the underlying immunologic mechanisms, suggesting an amplification cycle of atopic skin inflammation. In this review we summarize advances in our understanding of the complex interdependent network of members of the rapidly growing protein superfamilies of cytokines and chemokines that lead to the development of AD. Clinical observations in AD combined with the results of recent scientific studies suggest an amplification cycle of atopic skin inflammation (Fig 1). This cycle might start with pruritus, representing a prominent symptom of AD.2Steinhoff M, Bienenstock J, Schmelz M, Maurer M, Wei E, Biro T. Neurophysiological, neuroimmunological and neuroendocrine basis of pruritus. J Invest Dermatol. In press 2006.Google Scholar Patients scratch and induce mechanical injury, resulting in proinflammatory cytokine and chemokine production. Subsequently, chemokines, in concert with an array of adhesion molecules, direct the recruitment of pathogenic leukocytes to the skin.3Homey B. Alenius H. Muller A. Soto H. Bowman E.P. Yuan W. et al.CCL27-CCR10 interactions regulate T cell-mediated skin inflammation.Nat Med. 2002; 8: 157-165Crossref PubMed Scopus (639) Google Scholar, 4Leung D.Y. Bieber T. Atopic dermatitis.Lancet. 2003; 361: 151-160Abstract Full Text Full Text PDF PubMed Scopus (1163) Google Scholar, 5Reiss Y. Proudfoot A.E. Power C.A. Campbell J.J. Butcher E.C. CC chemokine receptor (CCR)4 and the CCR10 ligand cutaneous T cell-attracting chemokine (CTACK) in lymphocyte trafficking to inflamed skin.J Exp Med. 2001; 194: 1541-1547Crossref PubMed Scopus (440) Google Scholar, 6Campbell J.J. Butcher E.C. Chemokines in tissue-specific and microenvironment-specific lymphocyte homing.Curr Opin Immunol. 2000; 12: 336-341Crossref PubMed Scopus (554) Google Scholar Within the skin, distinct leukocyte subsets can become activated through different pathways: (1) epithelial cell–derived cytokines (eg, thymic stromal lymphopoietin [TSLP]) instruct dendritic cells (DCs) to induce TH2 cell differentiation7Gilliet M. Soumelis V. Watanabe N. Hanabuchi S. Antonenko S. de Waal-Malefyt R. et al.Human dendritic cells activated by TSLP and CD40L induce proallergic cytotoxic T cells.J Exp Med. 2003; 197: 1059-1063Crossref PubMed Scopus (121) Google Scholar, 8Li M. Messaddeq N. Teletin M. Pasquali J.L. Metzger D. Chambon P. Retinoid X receptor ablation in adult mouse keratinocytes generates an atopic dermatitis triggered by thymic stromal lymphopoietin.Proc Natl Acad Sci U S A. 2005; 102: 14795-14800Crossref PubMed Scopus (170) Google Scholar, 9Liu Y.J. Thymic stromal lymphopoietin: master switch for allergic inflammation.J Exp Med. 2006; 203: 269-273Crossref PubMed Scopus (455) Google Scholar, 10Yoo J. Omori M. Gyarmati D. Zhou B. Aye T. Brewer A. et al.Spontaneous atopic dermatitis in mice expressing an inducible thymic stromal lymphopoietin transgene specifically in the skin.J Exp Med. 2005; 202: 541-549Crossref PubMed Scopus (464) Google Scholar, 11Soumelis V. Reche P.A. Kanzler H. Yuan W. Edward G. Homey B. et al.Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP.Nat Immunol. 2002; 3: 673-680Crossref PubMed Scopus (338) Google Scholar; (2) memory T cells encounter their specific antigen-allergen (eg, Der p 2 from house dust mites) or bacterial superantigens (eg, staphylococcal enterotoxins)4Leung D.Y. Bieber T. Atopic dermatitis.Lancet. 2003; 361: 151-160Abstract Full Text Full Text PDF PubMed Scopus (1163) Google Scholar; (3) DCs bind antigen–specific IgE complexes, capture antigen, and show enhanced antigen presentation capabilities4Leung D.Y. Bieber T. Atopic dermatitis.Lancet. 2003; 361: 151-160Abstract Full Text Full Text PDF PubMed Scopus (1163) Google Scholar; (4) antigen–specific IgE complexes induce Fcε receptor aggregation and activate mast cells4Leung D.Y. Bieber T. Atopic dermatitis.Lancet. 2003; 361: 151-160Abstract Full Text Full Text PDF PubMed Scopus (1163) Google Scholar; and (5) viruses, fungi, and bacteria take advantage of a reduced level of antimicrobial peptides present in AD skin, colonize inflamed skin, and release proinflammatory products, resulting in the modulation and amplification of leukocyte activation.12Nomura I. Gao B. Boguniewicz M. Darst M.A. Travers J.B. Leung D.Y. Distinct patterns of gene expression in the skin lesions of atopic dermatitis and psoriasis: a gene microarray analysis.J Allergy Clin Immunol. 2003; 112: 1195-1202Abstract Full Text Full Text PDF PubMed Scopus (274) Google Scholar, 13Ong P.Y. Ohtake T. Brandt C. Strickland I. Boguniewicz M. Ganz T. et al.Endogenous antimicrobial peptides and skin infections in atopic dermatitis.N Engl J Med. 2002; 347: 1151-1160Crossref PubMed Scopus (1611) Google Scholar As a common feature, leukocyte activation results in the release of inflammatory mediators, including effector cytokines (IL-31) and proteases (tryptase), which, together with stress-induced neuropeptides, perpetuate pruritic signals.2Steinhoff M, Bienenstock J, Schmelz M, Maurer M, Wei E, Biro T. Neurophysiological, neuroimmunological and neuroendocrine basis of pruritus. J Invest Dermatol. In press 2006.Google Scholar, 14Dillon S.R. Sprecher C. Hammond A. Bilsborough J. Rosenfeld-Franklin M. Presnell S.R. et al.Interleukin 31, a cytokine produced by activated T cells, induces dermatitis in mice.Nat Immunol. 2004; 5: 752-760Crossref PubMed Scopus (721) Google Scholar, 15Schmelz M. Itch—mediators and mechanisms.J Dermatol Sci. 2002; 28: 91-96Abstract Full Text Full Text PDF PubMed Scopus (83) Google Scholar, 16Steinhoff M. Neisius U. Ikoma A. Fartasch M. Heyer G. Skov P.S. et al.Proteinase-activated receptor-2 mediates itch: a novel pathway for pruritus in human skin.J Neurosci. 2003; 23: 6176-6180PubMed Google Scholar Taken together, these amplifying processes sustain inflammatory responses within the skin and lead to the development of an AD phenotype. Little is known about the very early events initiating atopic skin inflammation. However, the production of primary proinflammatory cytokines after mechanical trauma and skin barrier disruption is a well-accepted scenario. Clinically, patients with AD show significantly lower itch thresholds and do not have skin lesions unless they scratch. Furthermore, experimental studies in mice support that the itch-scratch cycle is important for the development of dermatitis.17Mihara K. Kuratani K. Matsui T. Nakamura M. Yokota K. Vital role of the itch-scratch response in development of spontaneous dermatitis in NC/Nga mice.Br J Dermatol. 2004; 151: 335-345Crossref PubMed Scopus (74) Google Scholar Numerous studies showed that mechanical trauma and skin barrier disruption after tape stripping of the skin results in the rapid and marked upregulation of IL-1α, IL-1β, TNF-α, and GM-CSF.18Wood L.C. Jackson S.M. Elias P.M. Grunfeld C. Feingold K.R. Cutaneous barrier perturbation stimulates cytokine production in the epidermis of mice.J Clin Invest. 1992; 90: 482-487Crossref PubMed Scopus (407) Google Scholar, 19Wood L.C. Elias P.M. Calhoun C. Tsai J.C. Grunfeld C. Feingold K.R. Barrier disruption stimulates interleukin-1 alpha expression and release from a pre-formed pool in murine epidermis.J Invest Dermatol. 1996; 106: 397-403Crossref PubMed Scopus (243) Google Scholar These primary proinflammatory cytokines in turn induce the production of chemoattractants and adhesion molecules (eg, intercellular adhesion molecule 1), supporting the recruitment, proliferation, and survival of leukocytes at cutaneous sites. Next to mechanical trauma, the staphylococcal product peptidoglycan and histamine have been suggested to contribute to the increased expression of GM-CSF in keratinocytes within the lesional skin of patients with AD.20Matsubara M. Harada D. Manabe H. Hasegawa K. Staphylococcus aureus peptidoglycan stimulates granulocyte macrophage colony-stimulating factor production from human epidermal keratinocytes via mitogen-activated protein kinases.FEBS Lett. 2004; 566: 195-200Abstract Full Text Full Text PDF PubMed Scopus (31) Google Scholar, 21Kanda N. Watanabe S. Histamine enhances the production of granulocyte-macrophage colony-stimulating factor via protein kinase C alpha and extracellular signal-regulated kinase in human keratinocytes.J Invest Dermatol. 2004; 122: 863-872Crossref PubMed Scopus (41) Google Scholar Hence GM-CSF is regulated under the control of innate and adaptive immune pathways and might support the survival and retention of DC subsets at sites of atopic skin inflammation. Recently, a member of the rapidly expanding IL-1 superfamily, IL-18, has been shown to participate in the development of a relapsing dermatitis with mastocytosis, TH2 cytokine accumulation, and systemic increase of IgE and histamine levels.22Konishi H. Tsutsui H. Murakami T. Yumikura-Futatsugi S. Yamanaka K. Tanaka M. et al.IL-18 contributes to the spontaneous development of atopic dermatitis-like inflammatory skin lesion independently of IgE/stat6 under specific pathogen-free conditions.Proc Natl Acad Sci U S A. 2002; 99: 11340-11345Crossref PubMed Scopus (212) Google Scholar Various cell types, including macrophages and keratinocytes, store IL-18 as a biologically inactive precursor. Caspase-1 or caspase-like enzymes cleave pro-IL-18 and release the active form after stimulation by danger signals. Simultaneous skin-specific expression of IL-18 and caspase-1 leads to this atopy-like dermatitis.22Konishi H. Tsutsui H. Murakami T. Yumikura-Futatsugi S. Yamanaka K. Tanaka M. et al.IL-18 contributes to the spontaneous development of atopic dermatitis-like inflammatory skin lesion independently of IgE/stat6 under specific pathogen-free conditions.Proc Natl Acad Sci U S A. 2002; 99: 11340-11345Crossref PubMed Scopus (212) Google Scholar Interestingly, the dermatitis phenotype is independent of signal transducer and activator of transcription 6–signaling pathways but critically dependent on the presence of active IL-18.22Konishi H. Tsutsui H. Murakami T. Yumikura-Futatsugi S. Yamanaka K. Tanaka M. et al.IL-18 contributes to the spontaneous development of atopic dermatitis-like inflammatory skin lesion independently of IgE/stat6 under specific pathogen-free conditions.Proc Natl Acad Sci U S A. 2002; 99: 11340-11345Crossref PubMed Scopus (212) Google Scholar Therefore Konishi et al22Konishi H. Tsutsui H. Murakami T. Yumikura-Futatsugi S. Yamanaka K. Tanaka M. et al.IL-18 contributes to the spontaneous development of atopic dermatitis-like inflammatory skin lesion independently of IgE/stat6 under specific pathogen-free conditions.Proc Natl Acad Sci U S A. 2002; 99: 11340-11345Crossref PubMed Scopus (212) Google Scholar suggest that IL-18 induces IgE-independent allergic disorders and mediates an innate-type of allergic response. In contrast to these findings, Higa et al23Higa S. Kotani M. Matsumoto M. Fujita A. Hirano T. Suemura M. et al.Administration of anti-interleukin 18 antibody fails to inhibit development of dermatitis in atopic dermatitis-model mice NC/Nga.Br J Dermatol. 2003; 149: 39-45Crossref PubMed Scopus (8) Google Scholar could not demonstrate a role for IL-18 in the development of AD-like skin lesions in NC/Nga mice. Although IL-18 serum levels were significantly increased before and during the development in NC/Nga mice, administration of a neutralizing antibody failed to inhibit the onset and development of dermatitis and IgE level increase. The treatment, rather, tended to lead to an exacerbation of dermatitis and scratching behavior.23Higa S. Kotani M. Matsumoto M. Fujita A. Hirano T. Suemura M. et al.Administration of anti-interleukin 18 antibody fails to inhibit development of dermatitis in atopic dermatitis-model mice NC/Nga.Br J Dermatol. 2003; 149: 39-45Crossref PubMed Scopus (8) Google Scholar Keeping in mind that genetic approaches, intervention studies with neutralizing antibodies, and murine models for human diseases have their own limitations, the findings of a recent study by Novak et al24Novak N. Kruse S. Potreck J. Maintz L. Jenneck C. Weidinger S. et al.Single nucleotide polymorphisms of the IL18 gene are associated with atopic eczema.J Allergy Clin Immunol. 2005; 115: 828-833Abstract Full Text Full Text PDF PubMed Scopus (100) Google Scholar support a role for IL-18 in the pathogenesis of AD. Single nucleotide polymorphisms in exon 1 and the promoter region of the IL18 gene were significantly associated with an AD phenotype. These associations were independent of the concomitant manifestation of allergic rhinitis or asthma. Furthermore, the amount of IL-18 in the supernatants of PBMCs of patients with AD stimulated with staphylococcal enterotoxin B was significantly higher than that in healthy control subjects. In parallel, the amount of active IL-18 in the sera of patients with AD was enhanced at the exacerbation of their disease. These observations suggest that single nucleotide polymorphisms in the IL18 gene might be involved in the development of AD by contributing to a functional dysregulation of the IL-18 production in vivo.24Novak N. Kruse S. Potreck J. Maintz L. Jenneck C. Weidinger S. et al.Single nucleotide polymorphisms of the IL18 gene are associated with atopic eczema.J Allergy Clin Immunol. 2005; 115: 828-833Abstract Full Text Full Text PDF PubMed Scopus (100) Google Scholar Taken together, a set of primary proinflammatory cytokines might be induced through mechanical trauma and skin barrier disruption, initiating inflammation in atopic individuals. Furthermore, staphylococcal and mast cell products might sustain the release of these mediators and support the cycle of inflammation. Next to adhesion molecules, a new family of small cytokine-like proteins, the chemokines, has attracted significant interest with regard to understanding the mechanisms of leukocyte trafficking.25Butcher E.C. Picker L.J. Lymphocyte homing and homeostasis.Science. 1996; 272: 60-66Crossref PubMed Scopus (2493) Google Scholar, 26Homey B. Zlotnik A. Chemokines in allergy.Curr Opin Immunol. 1999; 11: 626-634Crossref PubMed Scopus (101) Google Scholar, 27Rossi D. Zlotnik A. The biology of chemokines and their receptors.Annu Rev Immunol. 2000; 18: 217-242Crossref PubMed Scopus (2083) Google Scholar, 28Zlotnik A. Yoshie O. Chemokines: a new classification system and their role in immunity.Immunity. 2000; 12: 121-127Abstract Full Text Full Text PDF PubMed Scopus (3232) Google Scholar Chemokines are small (8-11 kd) chemotactic peptides that organize innate, as well as adaptive, immune responses.28Zlotnik A. Yoshie O. Chemokines: a new classification system and their role in immunity.Immunity. 2000; 12: 121-127Abstract Full Text Full Text PDF PubMed Scopus (3232) Google Scholar To date, 45 human chemokine ligands have been identified, and this superfamily is thought to be among the first functional protein families completely characterized at the molecular level. On the basis of the arrangement of the amino terminal cysteine residues, chemokines can be divided into 4 subclasses: (1) CXC chemokines (termed CXC ligands [CXCLs]), (2) CC chemokines (CCL), (3) C chemokines (XCL), and (4) CX3C chemokine (CX3CL).27Rossi D. Zlotnik A. The biology of chemokines and their receptors.Annu Rev Immunol. 2000; 18: 217-242Crossref PubMed Scopus (2083) Google Scholar Chemokines bind pertussis toxin–sensitive, 7-transmembrane–spanning, G protein–coupled receptors. To date, 10 CC chemokine, 7 CXC chemokine, 1 CX3C, and 1 XCR receptors have been characterized.28Zlotnik A. Yoshie O. Chemokines: a new classification system and their role in immunity.Immunity. 2000; 12: 121-127Abstract Full Text Full Text PDF PubMed Scopus (3232) Google Scholar, 29Balabanian K. Lagane B. Infantino S. Chow K.Y. Harriague J. Moepps B. et al.The chemokine SDF-1/CXCL12 binds to and signals through the orphan receptor RDC1 in T lymphocytes.J Biol Chem. 2005; 280: 35760-35766Crossref PubMed Scopus (825) Google Scholar Chemokine receptor signaling involves different pathways sustaining cell survival, inducing gene expression, and, most importantly, enabling directional cell migration.27Rossi D. Zlotnik A. The biology of chemokines and their receptors.Annu Rev Immunol. 2000; 18: 217-242Crossref PubMed Scopus (2083) Google Scholar During the multistep process of leukocyte trafficking, chemokine ligand-receptor interactions mediate the firm adhesion of leukocytes to the endothelium and initiate transendothelial migration from the blood vessel into perivascular pockets.25Butcher E.C. Picker L.J. Lymphocyte homing and homeostasis.Science. 1996; 272: 60-66Crossref PubMed Scopus (2493) Google Scholar From perivascular spaces, matrix-bound sustained chemokine gradients direct skin-infiltrating leukocyte subsets to subepidermal or intraepidermal locations. Several homeostatic and inflammatory chemokines, including CCL1, CCL2, CCL3, CCL4, CCL5, CCL11, CCL13, CCL18, CCL20, CCL22, CCL26 and CCL27, have been shown to be associated with an AD phenotype and might support leukocyte recruitment (Table I).3Homey B. Alenius H. Muller A. Soto H. Bowman E.P. Yuan W. et al.CCL27-CCR10 interactions regulate T cell-mediated skin inflammation.Nat Med. 2002; 8: 157-165Crossref PubMed Scopus (639) Google Scholar, 30Gombert M. Dieu-Nosjean M.C. Winterberg F. Bünemann E. Kubitza R.C. Da Cunha L. et al.CCL1-CCR8 interactions: an axis mediating the recruitment of T cells and Langerhans-type dendritic cells to sites of atopic skin inflammation.J Immunol. 2005; 174: 5082-5091PubMed Google Scholar, 31Kaburagi Y. Shimada Y. Nagaoka T. Hasegawa M. Takehara K. Sato S. Enhanced production of CC-chemokines (RANTES, MCP-1, MIP-1alpha, MIP-1beta, and eotaxin) in patients with atopic dermatitis.Arch Dermatol Res. 2001; 293: 350-355Crossref PubMed Scopus (111) Google Scholar, 32Gluck J. Rogala B. Chemokine RANTES in atopic dermatitis.Arch Immunol Ther Exp (Warsz). 1999; 47: 367-372PubMed Google Scholar, 33Niwa Y. Elevated RANTES levels in plasma or skin and decreased plasma IL-10 levels in subsets of patients with severe atopic dermatitis.Arch Dermatol. 2000; 136: 125-126Crossref PubMed Scopus (33) Google Scholar, 34Park C.W. Lee B.H. Han H.J. Lee C.H. Ahn H.K. Tacrolimus decreases the expression of eotaxin, CCR3, RANTES and interleukin-5 in atopic dermatitis.Br J Dermatol. 2005; 152: 1173-1181Crossref PubMed Scopus (43) Google Scholar, 35Yamada H. Chihara J. Matsukura M. Yasuba H. Yudate T. Tezuka T. Elevated plasma RANTES levels in patients with atopic dermatitis.J Clin Lab Immunol. 1996; 48: 87-91PubMed Google Scholar, 36Yawalkar N. Uguccioni M. Scharer J. Braunwalder J. Karlen S. Dewald B. et al.Enhanced expression of eotaxin and CCR3 in atopic dermatitis.J Invest Dermatol. 1999; 113: 43-48Crossref PubMed Scopus (184) Google Scholar, 37Leung T.F. Wong C.K. Chan I.H. Ip W.K. Lam C.W. Wong G.W. Plasma concentration of thymus and activation-regulated chemokine is elevated in childhood asthma.J Allergy Clin Immunol. 2002; 110: 404-409Abstract Full Text Full Text PDF PubMed Scopus (92) Google Scholar, 38Jahnz-Rozyk K. Targowski T. Paluchowska E. Owczarek W. Kucharczyk A. Serum thymus and activation-regulated chemokine, macrophage-derived chemokine and eotaxin as markers of severity of atopic dermatitis.Allergy. 2005; 60: 685-688Crossref PubMed Scopus (134) Google Scholar, 39Hossny E. Aboul-Magd M. Bakr S. Increased plasma eotaxin in atopic dermatitis and acute urticaria in infants and children.Allergy. 2001; 56: 996-1002Crossref PubMed Scopus (45) Google Scholar, 40Taha R.A. Minshall E.M. Leung D.Y. Boguniewicz M. Luster A. Muro S. et al.Evidence for increased expression of eotaxin and monocyte chemotactic protein-4 in atopic dermatitis.J Allergy Clin Immunol. 2000; 105: 1002-1007Abstract Full Text Full Text PDF PubMed Scopus (94) Google Scholar, 41Hijnen D. De Bruin-Weller M. Oosting B. Lebre C. De Jong E. Bruijnzeel-Koomen C. et al.Serum thymus and activation-regulated chemokine (TARC) and cutaneous T cell- attracting chemokine (CTACK) levels in allergic diseases: TARC and CTACK are disease-specific markers for atopic dermatitis.J Allergy Clin Immunol. 2004; 113: 334-340Abstract Full Text Full Text PDF PubMed Scopus (208) Google Scholar, 42Kakinuma T. Nakamura K. Wakugawa M. Mitsui H. Tada Y. Saeki H. et al.Thymus and activation-regulated chemokine in atopic dermatitis: serum thymus and activation-regulated chemokine level is closely related with disease activity.J Allergy Clin Immunol. 2001; 107: 535-541Abstract Full Text Full Text PDF PubMed Scopus (452) Google Scholar, 43Lin L. Nonoyama S. Oshiba A. Kabasawa Y. Mizutani S. TARC and MDC are produced by CD40 activated human B cells and are elevated in the sera of infantile atopic dermatitis patients.J Med Dent Sci. 2003; 50: 27-33PubMed Google Scholar, 44Morita E. Hiragun T. Mihara S. Kaneko S. Matsuo H. Zhang Y. et al.Determination of thymus and activation-regulated chemokine (TARC)-contents in scales of atopic dermatitis.J Dermatol Sci. 2004; 34: 237-240Abstract Full Text Full Text PDF PubMed Scopus (24) Google Scholar, 45Uchida T. Suto H. Ra C. Ogawa H. Kobata T. Okumura K. Preferential expression of T(h)2-type chemokine and its receptor in atopic dermatitis.Int Immunol. 2002; 14: 1431-1438Crossref PubMed Scopus (48) Google Scholar, 46Pivarcsi A. Gombert M. Dieu-Nosjean M.C. Lauerma A. Kubitza R. Meller S. et al.CC chemokine ligand 18, an atopic dermatitis-associated and dendritic cell-derived chemokine, is regulated by staphylococcal products and allergen exposure.J Immunol. 2004; 173: 5810-5817PubMed Google Scholar, 47Gunther C. Bello-Fernandez C. Kopp T. Kund J. Carballido-Perrig N. Hinteregger S. et al.CCL18 is expressed in atopic dermatitis and mediates skin homing of human memory T cells.J Immunol. 2005; 174: 1723-1728PubMed Google Scholar, 48Nakayama T. Fujisawa R. Yamada H. Horikawa T. Kawasaki H. Hieshima K. et al.Inducible expression of a CC chemokine liver- and activation-regulated chemokine (LARC)/macrophage inflammatory protein (MIP)-3 alpha/CCL20 by epidermal keratinocytes and its role in atopic dermatitis.Int Immunol. 2001; 13: 95-103Crossref PubMed Scopus (160) Google Scholar, 49Horikawa T. Nakayama T. Hikita I. Yamada H. Fujisawa R. Bito T. et al.IFN-gamma-inducible expression of thymus and activation-regulated chemokine/CCL17 and macrophage-derived chemokine/CCL22 in epidermal keratinocytes and their roles in atopic dermatitis.Int Immunol. 2002; 14: 767-773Crossref PubMed Google Scholar, 50Leung T.F. Ma K.C. Hon K.L. Lam C.W. Wan H. Li C.Y. et al.Serum concentration of macrophage-derived chemokine may be a useful inflammatory marker for assessing severity of atopic dermatitis in infants and young children.Pediatr Allergy Immunol. 2003; 14: 296-301Crossref PubMed Scopus (74) Google Scholar, 51Kagami S. Kakinuma T. Saeki H. Tsunemi Y. Fujita H. Nakamura K. et al.Significant elevation of serum levels of eotaxin-3/CCL26, but not of eotaxin-2/CCL24, in patients with atopic dermatitis: serum eotaxin-3/CCL26 levels reflect the disease activity of atopic dermatitis.Clin Exp Immunol. 2003; 134: 309-313Crossref PubMed Scopus (91) Google Scholar, 52Shimada Y. Takehara K. Sato S. Both Th2 and Th1 chemokines (TARC/CCL17, MDC/CCL22, and Mig/CXCL9) are elevated in sera from patients with atopic dermatitis.J Dermatol Sci. 2004; 34: 201-208Abstract Full Text Full Text PDF PubMed Scopus (152) Google Scholar, 53Hon K.L. Leung T.F. Ma K.C. Li A.M. Wong Y. Fok T.F. Serum levels of cutaneous T-cell attracting chemokine (CTACK) as a laboratory marker of the severity of atopic dermatitis in children.Clin Exp Dermatol. 2004; 29: 293-296Crossref PubMed Scopus (58) Google Scholar, 54Kakinuma T. Nakamura K. Wakugawa M. Mitsui H. Tada Y. Saeki H. et al.Serum macrophage-derived chemokine (MDC) levels are closely related with the disease activity of atopic dermatitis.Clin Exp Immunol. 2002; 127: 270-273Crossref PubMed Scopus (135) Google Scholar, 55Kakinuma T. Saeki H. Tsunemi Y. Fujita H. Asano N. Mitsui H. et al.Increased serum cutaneous T cell-attracting chemokine (CCL27) levels in patients with atopic dermatitis and psoriasis vulgaris.J Allergy Clin Immunol. 2003; 111: 592-597Abstract Full Text Full Text PDF PubMed Scopus (126) Google Scholar, 56Echigo T. Hasegawa M. Shimada Y. Takehara K. Sato S. Expression of fractalkine and its receptor, CX3CR1, in atopic dermatitis: possible contribution to skin inflammation.J Allergy Clin Immunol. 2004; 113: 940-948Abstract Full Text Full Text PDF PubMed Scopus (72) Google Scholar Moreover, serum levels of CCL11, CCL17, CCL22, CCL26, CCL27, and CX3CL1 directly correlated with disease activity, suggesting an important role in the pathogenesis of AD (Table I).Table IAD-associated chemokines and their receptorsChemokine ligandCell of originIncreased serum/plasma levelsCorresponding receptor(s)Target cell(s)ReferencesCCL1/I-309Keratinocytes, endothelial cells, mast cellsYesCCR8T cells, LC precursors30Gombert M. Dieu-Nosjean M.C. Winterberg F. Bünemann E. Kubitza R.C. Da Cunha L. et al.CCL1-CCR8 interactions: an axis mediating the recruitment of T cells and Langerhans-type dendritic cells to sites of atopic skin inflammation.J Immunol. 2005; 174: 5082-5091PubMed Google ScholarCCL2/MCP-1Keratinocytes, leukocytesYesCCR2Monocytes, DC precursors31Kaburagi Y. Shimada Y. Nagaoka T. Hasegawa M. Takehara K. Sato S. Enhanced production of CC-chemokines (RANTES, MCP-1, MIP-1alpha, MIP-1beta, and eotaxin) in patients with atopic dermatitis.Arch Dermatol Res. 2001; 293: 350-355Crossref PubMed Scopus (111) Google ScholarCCL3/MIP-1αLeukocytesYesCCR1, CCR5Monocytes, T cells31Kaburagi Y. Shimada Y. Nagaoka T. Hasegawa M. Takehara K. Sato S. Enhanced production of CC-chemokines (RANTES, MCP-1, MIP-1alpha, MIP-1beta, and eotaxin) in patients with atopic dermatitis.Arch Dermatol Res. 2001; 293: 350-355Crossref PubMed Scopus (111) Google ScholarCCL4/MIP-1βLeukocytesYesCCR5Monocytes, T cells31Kaburagi Y. Shimada Y. Nagaoka T. Hasegawa M. Takehara K. Sato S. Enhanced production of CC-chemokines (RANTES, MCP-1, MIP-1alpha, MIP-1beta, and eotaxin) in patients with atopic dermatitis.Arch Dermatol Res. 2001; 293: 350-355Crossref PubMed Scopus (111) Google ScholarCCL5/RANTESKeratinocytes, leukocytesYesCCR1, CCR3, CCR5Eosinophils, T cells, fibroblasts31Kaburagi Y. Shimada Y. Nagaoka T. Hasegawa M. Takehara K. Sato S. Enhanced production of CC-chemokines (RANTES, MCP-1, MIP-1alpha, MIP-1beta, and eotaxin) in patients with atopic dermatitis.Arch Dermatol Res. 2001; 293: 350-355Crossref PubMed Scopus (111) Google Scholar, 32Gluck J. Rogala B. Chemokine RANTES in atopic dermatitis.Arch Immunol Ther Exp (Warsz). 1999; 47: 367-372PubMed Google Scholar, 33Niwa Y. Elevated RANTES levels in plasma or skin and decreased plasma IL-10 levels in subsets of patients with severe atopic dermatitis.Arch Dermatol. 2000; 136: 125-126Crossref PubMed Scopus (33) Google Scholar, 34Park C.W. Lee B.H. Han H.J. Lee C.H. Ahn H.K. Tacrolimus decreases the expression of eotaxin, CCR3, RANTES and interleukin-5 in atopic dermatitis.Br J Dermatol. 2005; 152: 1173-1181Crossref PubMed Scopus (43) Google Scholar, 35Yamada H. Chihara J. Matsukura M. Yasuba H. Yudate T. Tezuka T. Elevated plasma RANTES levels in patients with atopic dermatitis.J Clin Lab Immunol. 1996; 48: 87-91PubMed Google ScholarCCL11/eotaxinKeratinocytes, T cellsYes∗Serum or plasma levels directly correlated with disease activity.CCR3Eosinophils, T cells34Park C.W. Lee B.H. Han H.J. Lee C.H. Ahn H.K. Tacrolimus decreases the expression of eotaxin, CCR3, RANTES and interleukin-5 in atopic dermatitis.Br J Dermatol. 2005; 152: 1173-1181Crossref PubMed Scopus (43) Google Scholar, 36Yawalkar N. Uguccioni M. Scharer J. Braunwalder J. Karlen S. Dewald B. et al.Enhanced expression of eotaxin and CCR3 in atopic dermatitis.J Invest Dermatol. 1999; 113: 43-48Crossref PubMed Scopus (184) Google Scholar, 37Leung T.F. Wong C.K. Chan I.H. Ip W.K. Lam C.W. Wong G.W. Plasma concentration of thymus and activation-regula" @default.
- W2015784582 created "2016-06-24" @default.
- W2015784582 creator A5004992841 @default.
- W2015784582 creator A5026388597 @default.
- W2015784582 creator A5037531417 @default.
- W2015784582 creator A5065805653 @default.
- W2015784582 date "2006-07-01" @default.
- W2015784582 modified "2023-10-17" @default.
- W2015784582 title "Cytokines and chemokines orchestrate atopic skin inflammation" @default.
- W2015784582 cites W1540143312 @default.
- W2015784582 cites W1571292455 @default.
- W2015784582 cites W1582419036 @default.
- W2015784582 cites W158646000 @default.
- W2015784582 cites W1680121818 @default.
- W2015784582 cites W1965755303 @default.
- W2015784582 cites W1967944520 @default.
- W2015784582 cites W1968204922 @default.
- W2015784582 cites W1968787175 @default.
- W2015784582 cites W1968813912 @default.
- W2015784582 cites W1973276245 @default.
- W2015784582 cites W1975438745 @default.
- W2015784582 cites W1981029325 @default.
- W2015784582 cites W1981149366 @default.
- W2015784582 cites W1983657656 @default.
- W2015784582 cites W1983695621 @default.
- W2015784582 cites W1986892770 @default.
- W2015784582 cites W1990519548 @default.
- W2015784582 cites W1991195369 @default.
- W2015784582 cites W1994366381 @default.
- W2015784582 cites W2004722629 @default.
- W2015784582 cites W2006159146 @default.
- W2015784582 cites W2015941743 @default.
- W2015784582 cites W2019608331 @default.
- W2015784582 cites W2020617877 @default.
- W2015784582 cites W2023815620 @default.
- W2015784582 cites W2026990074 @default.
- W2015784582 cites W2032062642 @default.
- W2015784582 cites W2034284466 @default.
- W2015784582 cites W2035169316 @default.
- W2015784582 cites W2037089251 @default.
- W2015784582 cites W2042626190 @default.
- W2015784582 cites W2046910834 @default.
- W2015784582 cites W2051503115 @default.
- W2015784582 cites W2054975149 @default.
- W2015784582 cites W2060857853 @default.
- W2015784582 cites W2064681773 @default.
- W2015784582 cites W2067919290 @default.
- W2015784582 cites W2072448884 @default.
- W2015784582 cites W2074105245 @default.
- W2015784582 cites W2075665629 @default.
- W2015784582 cites W2076931885 @default.
- W2015784582 cites W2077529892 @default.
- W2015784582 cites W2079732145 @default.
- W2015784582 cites W2080316690 @default.
- W2015784582 cites W2082059820 @default.
- W2015784582 cites W2086224112 @default.
- W2015784582 cites W2088251776 @default.
- W2015784582 cites W2088834855 @default.
- W2015784582 cites W2090023666 @default.
- W2015784582 cites W2090042814 @default.
- W2015784582 cites W2094036101 @default.
- W2015784582 cites W2095224028 @default.
- W2015784582 cites W2102873430 @default.
- W2015784582 cites W2105176852 @default.
- W2015784582 cites W2107350004 @default.
- W2015784582 cites W2108868985 @default.
- W2015784582 cites W2109909774 @default.
- W2015784582 cites W2111388515 @default.
- W2015784582 cites W2112666289 @default.
- W2015784582 cites W2114962227 @default.
- W2015784582 cites W2115106819 @default.
- W2015784582 cites W2118526748 @default.
- W2015784582 cites W2121580723 @default.
- W2015784582 cites W2125347897 @default.
- W2015784582 cites W2131309533 @default.
- W2015784582 cites W2136267701 @default.
- W2015784582 cites W2138742397 @default.
- W2015784582 cites W2142940006 @default.
- W2015784582 cites W2145906584 @default.
- W2015784582 cites W2147307055 @default.
- W2015784582 cites W2156488305 @default.
- W2015784582 cites W2157069655 @default.
- W2015784582 cites W2162287533 @default.
- W2015784582 cites W2166021357 @default.
- W2015784582 cites W2170948066 @default.
- W2015784582 cites W4232510995 @default.
- W2015784582 cites W4236176569 @default.
- W2015784582 cites W97158386 @default.
- W2015784582 doi "https://doi.org/10.1016/j.jaci.2006.03.047" @default.
- W2015784582 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/16815153" @default.
- W2015784582 hasPublicationYear "2006" @default.
- W2015784582 type Work @default.
- W2015784582 sameAs 2015784582 @default.
- W2015784582 citedByCount "494" @default.
- W2015784582 countsByYear W20157845822012 @default.
- W2015784582 countsByYear W20157845822013 @default.
- W2015784582 countsByYear W20157845822014 @default.
- W2015784582 countsByYear W20157845822015 @default.