Matches in SemOpenAlex for { <https://semopenalex.org/work/W2015789462> ?p ?o ?g. }
- W2015789462 endingPage "1845" @default.
- W2015789462 startingPage "1831" @default.
- W2015789462 abstract "A hybrid model that blends two non-linear data-driven models, i.e. an artificial neural network (ANN) and a moving block bootstrap (MBB), is proposed for modelling annual streamflows of rivers that exhibit complex dependence. In the proposed model, the annual streamflows are modelled initially using a radial basis function ANN model. The residuals extracted from the neural network model are resampled using the non-parametric resampling technique MBB to obtain innovations, which are then added back to the ANN-modelled flows to generate synthetic replicates. The model has been applied to three annual streamflow records with variable record length, selected from different geographic regions, namely Africa, USA and former USSR. The performance of the proposed ANN-based non-linear hybrid model has been compared with that of the linear parametric hybrid model. The results from the case studies indicate that the proposed ANN-based hybrid model (ANNHM) is able to reproduce the skewness present in the streamflows better compared to the linear parametric-based hybrid model (LPHM), owing to the effective capturing of the non-linearities. Moreover, the ANNHM, being a completely data-driven model, reproduces the features of the marginal distribution more closely than the LPHM, but offers less smoothing and no extrapolation value. It is observed that even though the preservation of the linear dependence structure by the ANNHM is inferior to the LPHM, the effective blending of the two non-linear models helps the ANNHM to predict the drought and the storage characteristics efficiently. Copyright © 2007 John Wiley & Sons, Ltd." @default.
- W2015789462 created "2016-06-24" @default.
- W2015789462 creator A5025677977 @default.
- W2015789462 creator A5061903746 @default.
- W2015789462 creator A5062356901 @default.
- W2015789462 creator A5086561164 @default.
- W2015789462 date "2008-01-01" @default.
- W2015789462 modified "2023-09-25" @default.
- W2015789462 title "A nonlinear data-driven model for synthetic generation of annual streamflows" @default.
- W2015789462 cites W1834484028 @default.
- W2015789462 cites W1972168428 @default.
- W2015789462 cites W1978011969 @default.
- W2015789462 cites W1998442441 @default.
- W2015789462 cites W2009257456 @default.
- W2015789462 cites W2009678996 @default.
- W2015789462 cites W2012415715 @default.
- W2015789462 cites W2027758122 @default.
- W2015789462 cites W2031292142 @default.
- W2015789462 cites W2035421782 @default.
- W2015789462 cites W2045803502 @default.
- W2015789462 cites W2047694274 @default.
- W2015789462 cites W2051398087 @default.
- W2015789462 cites W2074770406 @default.
- W2015789462 cites W2084696946 @default.
- W2015789462 cites W2085932771 @default.
- W2015789462 cites W2090302955 @default.
- W2015789462 cites W2096239328 @default.
- W2015789462 cites W2104364752 @default.
- W2015789462 cites W2105391480 @default.
- W2015789462 cites W2106506852 @default.
- W2015789462 cites W2112702040 @default.
- W2015789462 cites W2114824684 @default.
- W2015789462 cites W2117897510 @default.
- W2015789462 cites W2155399784 @default.
- W2015789462 cites W2158222596 @default.
- W2015789462 cites W2164017619 @default.
- W2015789462 cites W2170262218 @default.
- W2015789462 cites W2171277043 @default.
- W2015789462 cites W3017323153 @default.
- W2015789462 cites W3018770027 @default.
- W2015789462 cites W3106889297 @default.
- W2015789462 cites W4298872162 @default.
- W2015789462 doi "https://doi.org/10.1002/hyp.6764" @default.
- W2015789462 hasPublicationYear "2008" @default.
- W2015789462 type Work @default.
- W2015789462 sameAs 2015789462 @default.
- W2015789462 citedByCount "25" @default.
- W2015789462 countsByYear W20157894622013 @default.
- W2015789462 countsByYear W20157894622014 @default.
- W2015789462 countsByYear W20157894622015 @default.
- W2015789462 countsByYear W20157894622016 @default.
- W2015789462 countsByYear W20157894622017 @default.
- W2015789462 countsByYear W20157894622018 @default.
- W2015789462 countsByYear W20157894622020 @default.
- W2015789462 countsByYear W20157894622021 @default.
- W2015789462 countsByYear W20157894622023 @default.
- W2015789462 crossrefType "journal-article" @default.
- W2015789462 hasAuthorship W2015789462A5025677977 @default.
- W2015789462 hasAuthorship W2015789462A5061903746 @default.
- W2015789462 hasAuthorship W2015789462A5062356901 @default.
- W2015789462 hasAuthorship W2015789462A5086561164 @default.
- W2015789462 hasConcept C105795698 @default.
- W2015789462 hasConcept C11413529 @default.
- W2015789462 hasConcept C117251300 @default.
- W2015789462 hasConcept C119857082 @default.
- W2015789462 hasConcept C121332964 @default.
- W2015789462 hasConcept C122342681 @default.
- W2015789462 hasConcept C132459708 @default.
- W2015789462 hasConcept C149782125 @default.
- W2015789462 hasConcept C150921843 @default.
- W2015789462 hasConcept C154945302 @default.
- W2015789462 hasConcept C158622935 @default.
- W2015789462 hasConcept C160920958 @default.
- W2015789462 hasConcept C163175372 @default.
- W2015789462 hasConcept C24574437 @default.
- W2015789462 hasConcept C31972630 @default.
- W2015789462 hasConcept C33923547 @default.
- W2015789462 hasConcept C3770464 @default.
- W2015789462 hasConcept C41008148 @default.
- W2015789462 hasConcept C50644808 @default.
- W2015789462 hasConcept C62520636 @default.
- W2015789462 hasConceptScore W2015789462C105795698 @default.
- W2015789462 hasConceptScore W2015789462C11413529 @default.
- W2015789462 hasConceptScore W2015789462C117251300 @default.
- W2015789462 hasConceptScore W2015789462C119857082 @default.
- W2015789462 hasConceptScore W2015789462C121332964 @default.
- W2015789462 hasConceptScore W2015789462C122342681 @default.
- W2015789462 hasConceptScore W2015789462C132459708 @default.
- W2015789462 hasConceptScore W2015789462C149782125 @default.
- W2015789462 hasConceptScore W2015789462C150921843 @default.
- W2015789462 hasConceptScore W2015789462C154945302 @default.
- W2015789462 hasConceptScore W2015789462C158622935 @default.
- W2015789462 hasConceptScore W2015789462C160920958 @default.
- W2015789462 hasConceptScore W2015789462C163175372 @default.
- W2015789462 hasConceptScore W2015789462C24574437 @default.
- W2015789462 hasConceptScore W2015789462C31972630 @default.
- W2015789462 hasConceptScore W2015789462C33923547 @default.
- W2015789462 hasConceptScore W2015789462C3770464 @default.