Matches in SemOpenAlex for { <https://semopenalex.org/work/W2015836100> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2015836100 endingPage "518" @default.
- W2015836100 startingPage "501" @default.
- W2015836100 abstract "We study a multilevel additive Schwarz method for the <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=h> <mml:semantics> <mml:mi>h</mml:mi> <mml:annotation encoding=application/x-tex>h</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-<inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=p> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=application/x-tex>p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> version of the Galerkin boundary element method with geometrically graded meshes. Both hypersingular and weakly singular integral equations of the first kind are considered. As it is well known the <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=h> <mml:semantics> <mml:mi>h</mml:mi> <mml:annotation encoding=application/x-tex>h</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-<inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=p> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=application/x-tex>p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> version with geometric meshes converges exponentially fast in the energy norm. However, the condition number of the Galerkin matrix in this case blows up exponentially in the number of unknowns <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper M> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding=application/x-tex>M</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We prove that the condition number <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=kappa left-parenthesis upper P right-parenthesis> <mml:semantics> <mml:mrow> <mml:mi>κ<!-- κ --></mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:mi>P</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>kappa (P)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of the multilevel additive Schwarz operator behaves like <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper O left-parenthesis StartRoot upper M EndRoot log squared upper M right-parenthesis> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:msqrt> <mml:mi>M</mml:mi> </mml:msqrt> <mml:msup> <mml:mi>log</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo><!-- --></mml:mo> <mml:mi>M</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>O(sqrt {M}log ^2M)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. As a direct consequence of this we also give the results for the <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=2> <mml:semantics> <mml:mn>2</mml:mn> <mml:annotation encoding=application/x-tex>2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-level preconditioner and also for the <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=h> <mml:semantics> <mml:mi>h</mml:mi> <mml:annotation encoding=application/x-tex>h</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-<inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=p> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=application/x-tex>p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> version with quasi-uniform meshes. Numerical results supporting our theory are presented." @default.
- W2015836100 created "2016-06-24" @default.
- W2015836100 creator A5005069559 @default.
- W2015836100 creator A5052916984 @default.
- W2015836100 creator A5080759662 @default.
- W2015836100 date "1998-01-01" @default.
- W2015836100 modified "2023-10-16" @default.
- W2015836100 title "Multilevel additive Schwarz method for the ℎ-𝑝 version of the Galerkin boundary element method" @default.
- W2015836100 cites W1557281095 @default.
- W2015836100 cites W1965698827 @default.
- W2015836100 cites W1972789047 @default.
- W2015836100 cites W1989773863 @default.
- W2015836100 cites W1990671420 @default.
- W2015836100 cites W1994843419 @default.
- W2015836100 cites W1995613081 @default.
- W2015836100 cites W2019517543 @default.
- W2015836100 cites W2024253680 @default.
- W2015836100 cites W2043347951 @default.
- W2015836100 cites W2055953382 @default.
- W2015836100 cites W2065524660 @default.
- W2015836100 cites W2065651109 @default.
- W2015836100 cites W2073805195 @default.
- W2015836100 cites W2093840123 @default.
- W2015836100 cites W2124387207 @default.
- W2015836100 cites W2490297076 @default.
- W2015836100 cites W4211153182 @default.
- W2015836100 cites W4236304369 @default.
- W2015836100 cites W4240260302 @default.
- W2015836100 cites W59417994 @default.
- W2015836100 doi "https://doi.org/10.1090/s0025-5718-98-00926-0" @default.
- W2015836100 hasPublicationYear "1998" @default.
- W2015836100 type Work @default.
- W2015836100 sameAs 2015836100 @default.
- W2015836100 citedByCount "30" @default.
- W2015836100 countsByYear W20158361002012 @default.
- W2015836100 countsByYear W20158361002014 @default.
- W2015836100 countsByYear W20158361002015 @default.
- W2015836100 countsByYear W20158361002016 @default.
- W2015836100 countsByYear W20158361002017 @default.
- W2015836100 countsByYear W20158361002018 @default.
- W2015836100 countsByYear W20158361002020 @default.
- W2015836100 countsByYear W20158361002021 @default.
- W2015836100 crossrefType "journal-article" @default.
- W2015836100 hasAuthorship W2015836100A5005069559 @default.
- W2015836100 hasAuthorship W2015836100A5052916984 @default.
- W2015836100 hasAuthorship W2015836100A5080759662 @default.
- W2015836100 hasBestOaLocation W20158361001 @default.
- W2015836100 hasConcept C11413529 @default.
- W2015836100 hasConcept C154945302 @default.
- W2015836100 hasConcept C2776321320 @default.
- W2015836100 hasConcept C33923547 @default.
- W2015836100 hasConcept C41008148 @default.
- W2015836100 hasConceptScore W2015836100C11413529 @default.
- W2015836100 hasConceptScore W2015836100C154945302 @default.
- W2015836100 hasConceptScore W2015836100C2776321320 @default.
- W2015836100 hasConceptScore W2015836100C33923547 @default.
- W2015836100 hasConceptScore W2015836100C41008148 @default.
- W2015836100 hasIssue "222" @default.
- W2015836100 hasLocation W20158361001 @default.
- W2015836100 hasOpenAccess W2015836100 @default.
- W2015836100 hasPrimaryLocation W20158361001 @default.
- W2015836100 hasRelatedWork W1529400504 @default.
- W2015836100 hasRelatedWork W1892467659 @default.
- W2015836100 hasRelatedWork W2143954309 @default.
- W2015836100 hasRelatedWork W2333703843 @default.
- W2015836100 hasRelatedWork W2334690443 @default.
- W2015836100 hasRelatedWork W2386767533 @default.
- W2015836100 hasRelatedWork W2394022102 @default.
- W2015836100 hasRelatedWork W2469937864 @default.
- W2015836100 hasRelatedWork W2808586768 @default.
- W2015836100 hasRelatedWork W2998403542 @default.
- W2015836100 hasVolume "67" @default.
- W2015836100 isParatext "false" @default.
- W2015836100 isRetracted "false" @default.
- W2015836100 magId "2015836100" @default.
- W2015836100 workType "article" @default.