Matches in SemOpenAlex for { <https://semopenalex.org/work/W2015862854> ?p ?o ?g. }
- W2015862854 endingPage "319" @default.
- W2015862854 startingPage "310" @default.
- W2015862854 abstract "High peak bone mass in early adulthood is an important protective factor against osteoporotic fractures in later life, but little is known about the effects of exercise on growing bone. The purpose of this cross-sectional study was to determine at which state of maturity (Tanner stage), the areal bone mineral density (BMD) differences between the playing and nonplaying arms of junior tennis players become obvious, and to clarify in each developmental stage which training and background variables, if any, could explain the interindividual differences in bones' response to mechanical loading. Ninety-one 7- to 17-year-old female tennis players and 58 healthy female controls were measured. In each Tanner stage, differences in BMD in playing and nonplaying (dominant and nondominant) arms (proximal humerus, humeral shaft, and distal radius) and BMD of the lumbar spine and nondominant distal radius were compared between the controls and players. Within each Tanner stage of players, the associations between training and background variables and BMD differences were analyzed with Spearman rank correlation coefficients. In players, BMD differences between the playing and nonplaying arms were significant (P < 0.05- < 0.001) in all Tanner stages, with the mean difference ranging from 1.6 to 15.7%. In controls, these dominant-to-nondominant arm differences were clearly smaller (ranging from -0.2 to 4.6%), but significant at some measured sites. In comparison with the relative side-to-side arm differences between the players and controls (i.e., examination of the training effect), the mean difference was not obvious and significant until the adolescent growth spurt (i.e., the girls in Tanner stage III with a mean age of 12.6 years). In the lumbar spine, significant BMD differences between players and controls were not found until Tanner stage IV (mean age 13.5 years; 8.7%, P < 0.05) and V (mean age 15.5 years; 12.4%, P < 0.05). In a nonloaded site of the skeleton (nondominant distal radius), no significant BMD differences were found between the players and controls in any Tanner stage. In the correlation analysis, the Tanner I and II players (mean ages 9.4 and 10.8 years) showed no significant associations between any of the predictive variables and the side-to-side BMD differences, while in Tanner stages III, IV, and V, such associations could be found; the total amount of training hours during the playing career and the number of training sessions per week showed a significant and systematic correlation (rs ranging from 0.43 to 0.80) with the side-to-side BMD differences in several measured bone sites. In conclusion, this study suggests that in a majority of female junior tennis players, the benefit of unilateral activity on bone density does not become clearly evident until the adolescent growth spurt or Tanner stage III. The total amount of training during the player's career and the current training frequency (sessions per week) seem to best explain the training effect on bone tissue, leaving, however, room for speculation on the still unknown factors that modulate the loading response of a growing bone." @default.
- W2015862854 created "2016-06-24" @default.
- W2015862854 creator A5040233371 @default.
- W2015862854 creator A5047635234 @default.
- W2015862854 creator A5050609279 @default.
- W2015862854 creator A5069632618 @default.
- W2015862854 creator A5071259514 @default.
- W2015862854 creator A5072500882 @default.
- W2015862854 creator A5082420272 @default.
- W2015862854 creator A5086623202 @default.
- W2015862854 date "1998-02-01" @default.
- W2015862854 modified "2023-10-11" @default.
- W2015862854 title "Effect of Long-Term Unilateral Activity on Bone Mineral Density of Female Junior Tennis Players" @default.
- W2015862854 cites W1524635504 @default.
- W2015862854 cites W1967130736 @default.
- W2015862854 cites W1974660743 @default.
- W2015862854 cites W1975506220 @default.
- W2015862854 cites W1979890142 @default.
- W2015862854 cites W1982156095 @default.
- W2015862854 cites W1990847484 @default.
- W2015862854 cites W1991671474 @default.
- W2015862854 cites W1995794155 @default.
- W2015862854 cites W1997411213 @default.
- W2015862854 cites W1997579491 @default.
- W2015862854 cites W2025378666 @default.
- W2015862854 cites W2026775077 @default.
- W2015862854 cites W2032787113 @default.
- W2015862854 cites W2036055199 @default.
- W2015862854 cites W2048329582 @default.
- W2015862854 cites W2048464476 @default.
- W2015862854 cites W2052775758 @default.
- W2015862854 cites W2054950420 @default.
- W2015862854 cites W2057962659 @default.
- W2015862854 cites W2078360409 @default.
- W2015862854 cites W2079887487 @default.
- W2015862854 cites W2087574088 @default.
- W2015862854 cites W2087836742 @default.
- W2015862854 cites W2088639621 @default.
- W2015862854 cites W2096550707 @default.
- W2015862854 cites W2100156983 @default.
- W2015862854 cites W2109361936 @default.
- W2015862854 cites W2117828778 @default.
- W2015862854 cites W2128241866 @default.
- W2015862854 cites W2136261265 @default.
- W2015862854 cites W2145026015 @default.
- W2015862854 cites W2166985937 @default.
- W2015862854 cites W2177317763 @default.
- W2015862854 cites W2332300541 @default.
- W2015862854 doi "https://doi.org/10.1359/jbmr.1998.13.2.310" @default.
- W2015862854 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/9495526" @default.
- W2015862854 hasPublicationYear "1998" @default.
- W2015862854 type Work @default.
- W2015862854 sameAs 2015862854 @default.
- W2015862854 citedByCount "298" @default.
- W2015862854 countsByYear W20158628542012 @default.
- W2015862854 countsByYear W20158628542013 @default.
- W2015862854 countsByYear W20158628542014 @default.
- W2015862854 countsByYear W20158628542015 @default.
- W2015862854 countsByYear W20158628542016 @default.
- W2015862854 countsByYear W20158628542017 @default.
- W2015862854 countsByYear W20158628542018 @default.
- W2015862854 countsByYear W20158628542019 @default.
- W2015862854 countsByYear W20158628542020 @default.
- W2015862854 countsByYear W20158628542021 @default.
- W2015862854 countsByYear W20158628542022 @default.
- W2015862854 countsByYear W20158628542023 @default.
- W2015862854 crossrefType "journal-article" @default.
- W2015862854 hasAuthorship W2015862854A5040233371 @default.
- W2015862854 hasAuthorship W2015862854A5047635234 @default.
- W2015862854 hasAuthorship W2015862854A5050609279 @default.
- W2015862854 hasAuthorship W2015862854A5069632618 @default.
- W2015862854 hasAuthorship W2015862854A5071259514 @default.
- W2015862854 hasAuthorship W2015862854A5072500882 @default.
- W2015862854 hasAuthorship W2015862854A5082420272 @default.
- W2015862854 hasAuthorship W2015862854A5086623202 @default.
- W2015862854 hasBestOaLocation W20158628541 @default.
- W2015862854 hasConcept C126322002 @default.
- W2015862854 hasConcept C1862650 @default.
- W2015862854 hasConcept C2776541429 @default.
- W2015862854 hasConcept C2776886416 @default.
- W2015862854 hasConcept C2779329777 @default.
- W2015862854 hasConcept C71924100 @default.
- W2015862854 hasConceptScore W2015862854C126322002 @default.
- W2015862854 hasConceptScore W2015862854C1862650 @default.
- W2015862854 hasConceptScore W2015862854C2776541429 @default.
- W2015862854 hasConceptScore W2015862854C2776886416 @default.
- W2015862854 hasConceptScore W2015862854C2779329777 @default.
- W2015862854 hasConceptScore W2015862854C71924100 @default.
- W2015862854 hasIssue "2" @default.
- W2015862854 hasLocation W20158628541 @default.
- W2015862854 hasLocation W20158628542 @default.
- W2015862854 hasOpenAccess W2015862854 @default.
- W2015862854 hasPrimaryLocation W20158628541 @default.
- W2015862854 hasRelatedWork W1530295206 @default.
- W2015862854 hasRelatedWork W1972798482 @default.
- W2015862854 hasRelatedWork W2046809491 @default.
- W2015862854 hasRelatedWork W2057982124 @default.
- W2015862854 hasRelatedWork W2139984428 @default.