Matches in SemOpenAlex for { <https://semopenalex.org/work/W2015877245> ?p ?o ?g. }
- W2015877245 endingPage "283" @default.
- W2015877245 startingPage "266" @default.
- W2015877245 abstract "Magnetic resonance spectroscopy (MRS) allows noninvasive detection of specific biologically relevant molecules in vivo. It has become a very useful and versatile tool for both clinical and basic science studies because it can measure concentrations of many important endogenous and exogenous molecules such as the putative neuronal marker N-acetylaspartate [1], the 19F-containing selective serotonin reuptake inhibitor Prozac [2], glycogen[3], and adenosine triphosphate [4]. For an endogenous molecule, its concentration measured by MRS is usually the result of a complex balance among various metabolic fluxes with each of the fluxes controlled by a host of different enzymes. By introducing exogenous 13C-labeled substrates certain metabolic pathways can be measured using 13C MRS (e.g., the glutamate-glutamine cycling flux in the brain [5, 6]).In addition to concentrations and metabolic fluxes, an exceptional feature of MRS is its ability to measure the rate of an exchange reaction catalyzed by a specific enzyme in vivo using the technique of magnetization (or saturation) transfer. When kinetically relevant reporter molecules are spin labeled and spin transferred, their exchange rate can be quantified based on the competition between chemical exchange and the longitudinal relaxation time (T1). The theory of chemical exchange magnetization transfer was developed by chemists more than fifty years ago [7–12]. The phenomenon of in vivo enzyme-specific chemical exchange magnetization transfer was discovered approximately thirty years ago for adenosine triphosphate (ATP)-related exchange reactions [13] including the exchange reactions catalyzed by creatine kinase [14] and the invertebrate-originated arginine kinase [14]. The ability of noninvasively extracting information from specific enzymes using in vivo MRS is highly significant and has generated a great deal of enthusiasm [14–21]. In particular, creatine kinase-catalyzed magnetization transfer effect has been demonstrated to be a useful magnetic resonance reporter of gene expression [22]. Obviously, it would be highly desirable if more enzymes were accessible to in vivo MRS-based magnetization transfer spectroscopy methods. However, since the early discoveries of the above-mentioned enzymes involved in catalyzing the transfer of phosphate groups no new enzymes exhibiting detectable in vivo magnetization transfer effects had been found until our recent discovery of in vivo 13C magnetization transfer effects [23, 24].Our interests in magnetization transfer started with the long-standing controversies on the rate of exchange between brain cytosolic glutamate/aspartate and mitochondrial α-ketoglutarate/oxaloacetate pools extracted from metabolic modeling of in vivo 13C MRS data. We hypothesized that if this exchange rate is very rapid it should be directly measurable using magnetization transfer. This line of research first led to the discovery of the in vivo magnetization transfer effect catalyzed by aspartate aminotransferase (AAT), then by lactate dehydrogenase (LDH) [25], malate dehydrogenase (MDH) [26], and carbonic anhydrase (CA) [27]. We demonstrated that the chemical exchange processes of these enzymes could be measured by 13C saturation transfer with 13C detection [24–27] and/or 13C saturation transfer with 1H detection techniques [28]. We also found that the exchange between 13C-labeled mitochondrial and cytosolic pools in brain is much faster than the tricarboxylic acid (TCA) cycle flux [29]. Here we endeavor to first give a brief overview of the early work in the field of in vivo 31P magnetization transfer spectroscopy because it is beyond the scope of this article to comprehensively review all in vivo magnetization transfer studies conducted on ATP-related enzymes using 31P MRS (the interested readers are referred to several excellent reviews on this topic [19–21]), Previous in vitro studies of enzyme systems using 13C NMR spectroscopy are also discussed. Then we will present the theoretical analyses and the experimental methods associated with detecting in vivo 13C magnetization transfer effects of a rapid chemical exchange process between small and large substrate pools, and review the current applications of in vivo 13C magnetization transfer spectroscopy to the study of enzymes. The chemical shifts of chemicals involved in enzyme-specific 13C magnetization transfer effects discovered so far are given in Table 1.Table 113C and 1H chemical shifts of molecules involved in enzyme-specific 13C magnetization transfer effects2. OverviewCreatine kinase (CK) has proven to be particularly amenable - in conjunction with 31P magnetization transfer spectroscopy - for elucidating rapid chemical exchange processes. CK catalyzes the phosphate of phosphocreatine (PCr) exchanges with the adenosine triphosphate (ATP) reaction, and is a key enzyme for maintaining cellular energy supplies:" @default.
- W2015877245 created "2016-06-24" @default.
- W2015877245 creator A5042335626 @default.
- W2015877245 creator A5080669501 @default.
- W2015877245 date "2009-10-01" @default.
- W2015877245 modified "2023-09-23" @default.
- W2015877245 title "Studying enzymes by in vivo 13C magnetic resonance spectroscopy" @default.
- W2015877245 cites W101180286 @default.
- W2015877245 cites W1026634013 @default.
- W2015877245 cites W110881563 @default.
- W2015877245 cites W111044861 @default.
- W2015877245 cites W1506452301 @default.
- W2015877245 cites W1540937567 @default.
- W2015877245 cites W1544076335 @default.
- W2015877245 cites W1544106935 @default.
- W2015877245 cites W1549224984 @default.
- W2015877245 cites W1554304086 @default.
- W2015877245 cites W1560694715 @default.
- W2015877245 cites W1561135223 @default.
- W2015877245 cites W1806555373 @default.
- W2015877245 cites W1926606629 @default.
- W2015877245 cites W1958525759 @default.
- W2015877245 cites W196314202 @default.
- W2015877245 cites W1963496172 @default.
- W2015877245 cites W1963582557 @default.
- W2015877245 cites W1963970506 @default.
- W2015877245 cites W1965395380 @default.
- W2015877245 cites W1968801272 @default.
- W2015877245 cites W1969283110 @default.
- W2015877245 cites W1970330964 @default.
- W2015877245 cites W1970987536 @default.
- W2015877245 cites W1971077570 @default.
- W2015877245 cites W1972712185 @default.
- W2015877245 cites W1973842058 @default.
- W2015877245 cites W1975107578 @default.
- W2015877245 cites W1976234287 @default.
- W2015877245 cites W1976584967 @default.
- W2015877245 cites W1978553496 @default.
- W2015877245 cites W1980668478 @default.
- W2015877245 cites W1983707603 @default.
- W2015877245 cites W1984625511 @default.
- W2015877245 cites W1985992749 @default.
- W2015877245 cites W1989528677 @default.
- W2015877245 cites W1990267520 @default.
- W2015877245 cites W1992467445 @default.
- W2015877245 cites W1994676591 @default.
- W2015877245 cites W1996186792 @default.
- W2015877245 cites W1996402223 @default.
- W2015877245 cites W1998831159 @default.
- W2015877245 cites W1998859334 @default.
- W2015877245 cites W1999352543 @default.
- W2015877245 cites W2001800866 @default.
- W2015877245 cites W2002252682 @default.
- W2015877245 cites W2003427423 @default.
- W2015877245 cites W2009112781 @default.
- W2015877245 cites W2009412483 @default.
- W2015877245 cites W2010721602 @default.
- W2015877245 cites W2011381934 @default.
- W2015877245 cites W2011843627 @default.
- W2015877245 cites W2012418838 @default.
- W2015877245 cites W2012851941 @default.
- W2015877245 cites W2013122896 @default.
- W2015877245 cites W2015796716 @default.
- W2015877245 cites W2016065841 @default.
- W2015877245 cites W2016891448 @default.
- W2015877245 cites W2019323481 @default.
- W2015877245 cites W2019657620 @default.
- W2015877245 cites W2020661448 @default.
- W2015877245 cites W2022197719 @default.
- W2015877245 cites W2022719895 @default.
- W2015877245 cites W2022816741 @default.
- W2015877245 cites W2024623892 @default.
- W2015877245 cites W2024717575 @default.
- W2015877245 cites W2026316964 @default.
- W2015877245 cites W2027670788 @default.
- W2015877245 cites W2029624481 @default.
- W2015877245 cites W2029919028 @default.
- W2015877245 cites W2030548279 @default.
- W2015877245 cites W2034901921 @default.
- W2015877245 cites W2035046825 @default.
- W2015877245 cites W2036005020 @default.
- W2015877245 cites W2037098007 @default.
- W2015877245 cites W2037361270 @default.
- W2015877245 cites W2037791951 @default.
- W2015877245 cites W2037900730 @default.
- W2015877245 cites W2038405036 @default.
- W2015877245 cites W2039518420 @default.
- W2015877245 cites W2041171305 @default.
- W2015877245 cites W2041738481 @default.
- W2015877245 cites W2042160139 @default.
- W2015877245 cites W2048106397 @default.
- W2015877245 cites W2049338248 @default.
- W2015877245 cites W2049900081 @default.
- W2015877245 cites W2052313463 @default.
- W2015877245 cites W2052750469 @default.
- W2015877245 cites W2053519746 @default.
- W2015877245 cites W2053680791 @default.
- W2015877245 cites W2055557864 @default.