Matches in SemOpenAlex for { <https://semopenalex.org/work/W2015879326> ?p ?o ?g. }
- W2015879326 endingPage "312" @default.
- W2015879326 startingPage "303" @default.
- W2015879326 abstract "Although human exposure generally occurs to mixtures of chemicals, limited toxicological information is available to characterize the potential interactions of the components of environmental mixtures. This study was conducted to compare the genotoxicity of chemically characterized polycyclic aromatic hydrocarbon (PAH) mixtures using in vitro and in vivo techniques. A total of three extracts (E1–E3) were selected from sediment samples collected from a lake adjacent to an abandoned coal gasification site. Sediments were collected on a grid moving downstream and away from the most likely source of PAH contamination, with E1 collected closest to the shore, E2 at an intermediate distance, and E3 furthest from the shore. The sediment samples were extracted in methylene chloride and methanol, dried, and redissolved in an appropriate solvent for evaluation in a battery of genotoxicity assays. Samples were evaluated for their ability to produce point mutations in bacteria and DNA adducts in vitro without metabolic activation or in vivo. Samples were also analyzed using GC/MS. Sample E1 had both the highest concentration of benzo(a)pyrene (BP) (46.5 ppm) and carcinogenic PAHs and, using 32P-postlabeling, induced the highest adduct levels overall in vitro and in vivo. Sample E2, which had a BP concentration of 14 ppm, induced the greatest number of revertants in the bacterial mutagenicity assay. Sample E3, which had the lowest level of carcinogenic PAHs and BP, induced the lowest adduct levels. However, E3 was capable of inducing a positive genotoxic response in bacteria (with S9), although the slope of the response at lower doses was less than that of E2. The in vivo data showed that the major adduct formed by E1 and E2 was a BP adduct. This information could not have been obtained with the Salmonella or in vitro postlabeling tests. Among internal organs, the extracts of all three samples induced the greatest adduct levels in the lung, similarly to previous complex PAH mixtures studied. These data demonstrate the limitations of predicting genotoxic or carcinogenic potential based on chemical analysis or a single biological test. The results suggest that mixture interactions, cytotoxicity and metabolism are likely to have an influence on the potential of a complex mixture of chemicals to produce a carcinogenic effect. In addition, the concentration of genotoxic PAHs and both in vitro and in vivo DNA adduct formations were decreased with increasing distance from the shoreline. Environ. Mol. Mutagen. 33:303–312, 1999 © 1999 Wiley-Liss, Inc." @default.
- W2015879326 created "2016-06-24" @default.
- W2015879326 creator A5010389984 @default.
- W2015879326 creator A5033212305 @default.
- W2015879326 creator A5053354723 @default.
- W2015879326 creator A5056450528 @default.
- W2015879326 creator A5072646206 @default.
- W2015879326 creator A5076815535 @default.
- W2015879326 creator A5082824077 @default.
- W2015879326 date "1999-01-01" @default.
- W2015879326 modified "2023-09-26" @default.
- W2015879326 title "Genotoxicity of complex PAH mixtures recovered from contaminated lake sediments as assessed by three different methods" @default.
- W2015879326 cites W1965433424 @default.
- W2015879326 cites W1973195696 @default.
- W2015879326 cites W1973789403 @default.
- W2015879326 cites W1977172158 @default.
- W2015879326 cites W1977882783 @default.
- W2015879326 cites W1982805396 @default.
- W2015879326 cites W1983612873 @default.
- W2015879326 cites W1987729067 @default.
- W2015879326 cites W1990046602 @default.
- W2015879326 cites W1991323363 @default.
- W2015879326 cites W1994012794 @default.
- W2015879326 cites W2000562308 @default.
- W2015879326 cites W2000813984 @default.
- W2015879326 cites W2007771194 @default.
- W2015879326 cites W2010920886 @default.
- W2015879326 cites W2013483655 @default.
- W2015879326 cites W2013807142 @default.
- W2015879326 cites W2019035170 @default.
- W2015879326 cites W2022109883 @default.
- W2015879326 cites W2025845692 @default.
- W2015879326 cites W2031952542 @default.
- W2015879326 cites W2038144895 @default.
- W2015879326 cites W2050764934 @default.
- W2015879326 cites W2055951387 @default.
- W2015879326 cites W2074853586 @default.
- W2015879326 cites W2084626592 @default.
- W2015879326 cites W2086389658 @default.
- W2015879326 cites W2088081125 @default.
- W2015879326 cites W2090071080 @default.
- W2015879326 cites W2090685275 @default.
- W2015879326 cites W2113001570 @default.
- W2015879326 cites W2128442121 @default.
- W2015879326 cites W2130570269 @default.
- W2015879326 cites W2150693966 @default.
- W2015879326 cites W2159445945 @default.
- W2015879326 cites W1984668454 @default.
- W2015879326 doi "https://doi.org/10.1002/(sici)1098-2280(1999)33:4<303::aid-em7>3.0.co;2-0" @default.
- W2015879326 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/10398378" @default.
- W2015879326 hasPublicationYear "1999" @default.
- W2015879326 type Work @default.
- W2015879326 sameAs 2015879326 @default.
- W2015879326 citedByCount "32" @default.
- W2015879326 countsByYear W20158793262012 @default.
- W2015879326 countsByYear W20158793262013 @default.
- W2015879326 countsByYear W20158793262014 @default.
- W2015879326 countsByYear W20158793262022 @default.
- W2015879326 crossrefType "journal-article" @default.
- W2015879326 hasAuthorship W2015879326A5010389984 @default.
- W2015879326 hasAuthorship W2015879326A5033212305 @default.
- W2015879326 hasAuthorship W2015879326A5053354723 @default.
- W2015879326 hasAuthorship W2015879326A5056450528 @default.
- W2015879326 hasAuthorship W2015879326A5072646206 @default.
- W2015879326 hasAuthorship W2015879326A5076815535 @default.
- W2015879326 hasAuthorship W2015879326A5082824077 @default.
- W2015879326 hasConcept C107872376 @default.
- W2015879326 hasConcept C112570922 @default.
- W2015879326 hasConcept C114246631 @default.
- W2015879326 hasConcept C150903083 @default.
- W2015879326 hasConcept C151730666 @default.
- W2015879326 hasConcept C178790620 @default.
- W2015879326 hasConcept C185592680 @default.
- W2015879326 hasConcept C18903297 @default.
- W2015879326 hasConcept C207001950 @default.
- W2015879326 hasConcept C2776639595 @default.
- W2015879326 hasConcept C2777538855 @default.
- W2015879326 hasConcept C2778951431 @default.
- W2015879326 hasConcept C2778959862 @default.
- W2015879326 hasConcept C2779033964 @default.
- W2015879326 hasConcept C2781247443 @default.
- W2015879326 hasConcept C2816523 @default.
- W2015879326 hasConcept C29730261 @default.
- W2015879326 hasConcept C43617362 @default.
- W2015879326 hasConcept C86803240 @default.
- W2015879326 hasConceptScore W2015879326C107872376 @default.
- W2015879326 hasConceptScore W2015879326C112570922 @default.
- W2015879326 hasConceptScore W2015879326C114246631 @default.
- W2015879326 hasConceptScore W2015879326C150903083 @default.
- W2015879326 hasConceptScore W2015879326C151730666 @default.
- W2015879326 hasConceptScore W2015879326C178790620 @default.
- W2015879326 hasConceptScore W2015879326C185592680 @default.
- W2015879326 hasConceptScore W2015879326C18903297 @default.
- W2015879326 hasConceptScore W2015879326C207001950 @default.
- W2015879326 hasConceptScore W2015879326C2776639595 @default.
- W2015879326 hasConceptScore W2015879326C2777538855 @default.
- W2015879326 hasConceptScore W2015879326C2778951431 @default.
- W2015879326 hasConceptScore W2015879326C2778959862 @default.