Matches in SemOpenAlex for { <https://semopenalex.org/work/W2015958045> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2015958045 endingPage "04013021" @default.
- W2015958045 startingPage "04013021" @default.
- W2015958045 abstract "In deregulated power systems, market participants prefer to have a fast and accurate estimation of their loss quota for any transaction before confirming their transaction in the market. This helps participants increase their own benefit. This paper presents a fast artificial intelligence–based incremental transmission loss allocation (ITLA) algorithm for determining the loss quota of any transaction and participant entity in open access environments. As a feature selection technique, the decision tree (DT) method is applied in order to define the transactions with inconsiderable impact on the loss quota of each market participant. Then, using only the effective transactions, an artificial neural networks (ANN) is trained to estimate the loss quota of each transaction in the market. Applying the DT significantly reduces the input dimension of the ANN, and thus it reduces the training time and improves the accuracy of the loss quota estimated by ANN. The market participants can employ the proposed artificial intelligence-based ITLA algorithm to estimate their own loss quota even in large scale power systems with large amount of possible transactions. One attractive result of the proposed algorithm is that it is implemented in multilateral open access environments including some trader entities and bilateral markets as well. The proposed algorithm is computationally efficient and provides solution on a real-time application. Therefore, it can be based on ex-ante loss allocation methods in the future to improve market efficiency. The proposed algorithm is applied on IEEE-RTS test system and simulation results show the algorithm’s effectiveness." @default.
- W2015958045 created "2016-06-24" @default.
- W2015958045 creator A5012336081 @default.
- W2015958045 creator A5030632729 @default.
- W2015958045 creator A5043116473 @default.
- W2015958045 creator A5073855203 @default.
- W2015958045 date "2014-06-01" @default.
- W2015958045 modified "2023-09-27" @default.
- W2015958045 title "Artificial Intelligence–Based Loss Allocation Algorithm in Open Access Environments" @default.
- W2015958045 cites W1488541432 @default.
- W2015958045 cites W1571403844 @default.
- W2015958045 cites W1595740553 @default.
- W2015958045 cites W1853953842 @default.
- W2015958045 cites W1966002195 @default.
- W2015958045 cites W1969122921 @default.
- W2015958045 cites W1971610124 @default.
- W2015958045 cites W1975107288 @default.
- W2015958045 cites W1991673805 @default.
- W2015958045 cites W1993750689 @default.
- W2015958045 cites W2004465912 @default.
- W2015958045 cites W2008201435 @default.
- W2015958045 cites W2012702520 @default.
- W2015958045 cites W2012779215 @default.
- W2015958045 cites W2024186094 @default.
- W2015958045 cites W2035361954 @default.
- W2015958045 cites W2041181231 @default.
- W2015958045 cites W2043543477 @default.
- W2015958045 cites W204709066 @default.
- W2015958045 cites W2058821222 @default.
- W2015958045 cites W2108516057 @default.
- W2015958045 cites W2108728387 @default.
- W2015958045 cites W2110167161 @default.
- W2015958045 cites W2115809249 @default.
- W2015958045 cites W2122343929 @default.
- W2015958045 cites W2134801360 @default.
- W2015958045 cites W2142602073 @default.
- W2015958045 cites W2149772057 @default.
- W2015958045 cites W2164874406 @default.
- W2015958045 cites W2165816138 @default.
- W2015958045 cites W2171378591 @default.
- W2015958045 cites W2278932568 @default.
- W2015958045 cites W2538968202 @default.
- W2015958045 cites W3085162807 @default.
- W2015958045 cites W2043476758 @default.
- W2015958045 doi "https://doi.org/10.1061/(asce)ey.1943-7897.0000172" @default.
- W2015958045 hasPublicationYear "2014" @default.
- W2015958045 type Work @default.
- W2015958045 sameAs 2015958045 @default.
- W2015958045 citedByCount "3" @default.
- W2015958045 countsByYear W20159580452016 @default.
- W2015958045 countsByYear W20159580452018 @default.
- W2015958045 crossrefType "journal-article" @default.
- W2015958045 hasAuthorship W2015958045A5012336081 @default.
- W2015958045 hasAuthorship W2015958045A5030632729 @default.
- W2015958045 hasAuthorship W2015958045A5043116473 @default.
- W2015958045 hasAuthorship W2015958045A5073855203 @default.
- W2015958045 hasConcept C11413529 @default.
- W2015958045 hasConcept C119857082 @default.
- W2015958045 hasConcept C154945302 @default.
- W2015958045 hasConcept C202444582 @default.
- W2015958045 hasConcept C33676613 @default.
- W2015958045 hasConcept C33923547 @default.
- W2015958045 hasConcept C41008148 @default.
- W2015958045 hasConcept C50644808 @default.
- W2015958045 hasConcept C75949130 @default.
- W2015958045 hasConcept C77088390 @default.
- W2015958045 hasConceptScore W2015958045C11413529 @default.
- W2015958045 hasConceptScore W2015958045C119857082 @default.
- W2015958045 hasConceptScore W2015958045C154945302 @default.
- W2015958045 hasConceptScore W2015958045C202444582 @default.
- W2015958045 hasConceptScore W2015958045C33676613 @default.
- W2015958045 hasConceptScore W2015958045C33923547 @default.
- W2015958045 hasConceptScore W2015958045C41008148 @default.
- W2015958045 hasConceptScore W2015958045C50644808 @default.
- W2015958045 hasConceptScore W2015958045C75949130 @default.
- W2015958045 hasConceptScore W2015958045C77088390 @default.
- W2015958045 hasIssue "2" @default.
- W2015958045 hasLocation W20159580451 @default.
- W2015958045 hasOpenAccess W2015958045 @default.
- W2015958045 hasPrimaryLocation W20159580451 @default.
- W2015958045 hasRelatedWork W2370639576 @default.
- W2015958045 hasRelatedWork W2608853168 @default.
- W2015958045 hasRelatedWork W2961085424 @default.
- W2015958045 hasRelatedWork W3046775127 @default.
- W2015958045 hasRelatedWork W4205958290 @default.
- W2015958045 hasRelatedWork W4286629047 @default.
- W2015958045 hasRelatedWork W4306321456 @default.
- W2015958045 hasRelatedWork W4306674287 @default.
- W2015958045 hasRelatedWork W1629725936 @default.
- W2015958045 hasRelatedWork W4224009465 @default.
- W2015958045 hasVolume "140" @default.
- W2015958045 isParatext "false" @default.
- W2015958045 isRetracted "false" @default.
- W2015958045 magId "2015958045" @default.
- W2015958045 workType "article" @default.