Matches in SemOpenAlex for { <https://semopenalex.org/work/W2015963212> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2015963212 endingPage "6391" @default.
- W2015963212 startingPage "6369" @default.
- W2015963212 abstract "Phantoms for dynamic contrast enhanced (DCE) imaging modalities such as DCE computed tomography (DCE-CT) and DCE magnetic resonance imaging (DCE-MRI) are valuable tools for evaluating and comparing imaging systems. It is important for the contrast-agent distribution within the phantom to possess a time dependence that replicates a curve observed clinically, known as the 'tumor-enhancement curve'. It is also important for the concentration field within the lesion to be as uniform as possible. This study demonstrates how computational fluid dynamics (CFD) can be applied to achieve these goals within design constraints. The distribution of the contrast agent within the simulated phantoms was investigated in relation to the influence of three factors of the phantom design. First, the interaction between the inlets and the uniformity of the contrast agent within the phantom was modeled. Second, pumps were programmed using a variety of schemes and the resultant dynamic uptake curves were compared to tumor-enhancement curves obtained from clinical data. Third, the effectiveness of pulsing the inlet flow rate to produce faster equilibration of the contrast-agent distribution was quantified. The models employed a spherical lesion and design constraints (lesion diameter, inlet-tube size and orientation, contrast-agent flow rates and fluid properties) taken from a recently published DCE-MRI phantom study. For DCE-MRI in breast cancer detection, where the target tumor-enhancement curve varies on the scale of hundreds of seconds, optimizing the number of inlet tubes and their orientation was found to be adequate for attaining concentration uniformity and reproducing the target tumor-enhancement curve. For DCE-CT in liver tumor detection, where the tumor-enhancement curve varies on a scale of tens of seconds, the use of an iterated inlet condition (programmed into the pump) enabled the phantom to reproduce the target tumor-enhancement curve within a few per cent beyond about 6 s of wash-in. This time was cut in half by the final CFD-derived strategy of flow pulsing. Driving the pump with a 25% duty cycle pulsatile waveform produced a nearly uniform concentration in the phantom in just a few seconds under typical conditions. Comparisons with published x-ray measurements using tumor-enhancement curves for both benign and malignant breast lesions showed a difference of approximately 4% between the CFD predictions and measurements of the contrast-agent concentration averaged over the lesion volume. The techniques derived using CFD optimization can be used in future phantom designs, including as starting points for future CFD phantom studies employing new lesion geometries and tumor-enhancement curves." @default.
- W2015963212 created "2016-06-24" @default.
- W2015963212 creator A5028720442 @default.
- W2015963212 creator A5069810715 @default.
- W2015963212 creator A5084561682 @default.
- W2015963212 date "2013-09-02" @default.
- W2015963212 modified "2023-09-23" @default.
- W2015963212 title "Use of computational fluid dynamics in the design of dynamic contrast enhanced imaging phantoms" @default.
- W2015963212 cites W1964140597 @default.
- W2015963212 cites W1970300989 @default.
- W2015963212 cites W1972951903 @default.
- W2015963212 cites W1988821523 @default.
- W2015963212 cites W1993722264 @default.
- W2015963212 cites W2005157580 @default.
- W2015963212 cites W2033399811 @default.
- W2015963212 cites W2045324811 @default.
- W2015963212 cites W2056202997 @default.
- W2015963212 cites W2072201346 @default.
- W2015963212 cites W2073309240 @default.
- W2015963212 cites W2085735070 @default.
- W2015963212 cites W2102196834 @default.
- W2015963212 cites W2110226996 @default.
- W2015963212 cites W2160231574 @default.
- W2015963212 cites W2171941442 @default.
- W2015963212 cites W2315553855 @default.
- W2015963212 cites W4245146969 @default.
- W2015963212 doi "https://doi.org/10.1088/0031-9155/58/18/6369" @default.
- W2015963212 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23999605" @default.
- W2015963212 hasPublicationYear "2013" @default.
- W2015963212 type Work @default.
- W2015963212 sameAs 2015963212 @default.
- W2015963212 citedByCount "6" @default.
- W2015963212 countsByYear W20159632122013 @default.
- W2015963212 countsByYear W20159632122016 @default.
- W2015963212 countsByYear W20159632122019 @default.
- W2015963212 countsByYear W20159632122021 @default.
- W2015963212 countsByYear W20159632122022 @default.
- W2015963212 crossrefType "journal-article" @default.
- W2015963212 hasAuthorship W2015963212A5028720442 @default.
- W2015963212 hasAuthorship W2015963212A5069810715 @default.
- W2015963212 hasAuthorship W2015963212A5084561682 @default.
- W2015963212 hasConcept C104293457 @default.
- W2015963212 hasConcept C120665830 @default.
- W2015963212 hasConcept C121332964 @default.
- W2015963212 hasConcept C126838900 @default.
- W2015963212 hasConcept C127413603 @default.
- W2015963212 hasConcept C136229726 @default.
- W2015963212 hasConcept C143409427 @default.
- W2015963212 hasConcept C154945302 @default.
- W2015963212 hasConcept C1633027 @default.
- W2015963212 hasConcept C192562407 @default.
- W2015963212 hasConcept C201289731 @default.
- W2015963212 hasConcept C2776502983 @default.
- W2015963212 hasConcept C2994142346 @default.
- W2015963212 hasConcept C38349280 @default.
- W2015963212 hasConcept C41008148 @default.
- W2015963212 hasConcept C57879066 @default.
- W2015963212 hasConcept C71924100 @default.
- W2015963212 hasConcept C78519656 @default.
- W2015963212 hasConceptScore W2015963212C104293457 @default.
- W2015963212 hasConceptScore W2015963212C120665830 @default.
- W2015963212 hasConceptScore W2015963212C121332964 @default.
- W2015963212 hasConceptScore W2015963212C126838900 @default.
- W2015963212 hasConceptScore W2015963212C127413603 @default.
- W2015963212 hasConceptScore W2015963212C136229726 @default.
- W2015963212 hasConceptScore W2015963212C143409427 @default.
- W2015963212 hasConceptScore W2015963212C154945302 @default.
- W2015963212 hasConceptScore W2015963212C1633027 @default.
- W2015963212 hasConceptScore W2015963212C192562407 @default.
- W2015963212 hasConceptScore W2015963212C201289731 @default.
- W2015963212 hasConceptScore W2015963212C2776502983 @default.
- W2015963212 hasConceptScore W2015963212C2994142346 @default.
- W2015963212 hasConceptScore W2015963212C38349280 @default.
- W2015963212 hasConceptScore W2015963212C41008148 @default.
- W2015963212 hasConceptScore W2015963212C57879066 @default.
- W2015963212 hasConceptScore W2015963212C71924100 @default.
- W2015963212 hasConceptScore W2015963212C78519656 @default.
- W2015963212 hasIssue "18" @default.
- W2015963212 hasLocation W20159632121 @default.
- W2015963212 hasLocation W20159632122 @default.
- W2015963212 hasOpenAccess W2015963212 @default.
- W2015963212 hasPrimaryLocation W20159632121 @default.
- W2015963212 hasRelatedWork W1652767825 @default.
- W2015963212 hasRelatedWork W1669289671 @default.
- W2015963212 hasRelatedWork W2067662806 @default.
- W2015963212 hasRelatedWork W2092245494 @default.
- W2015963212 hasRelatedWork W2100431377 @default.
- W2015963212 hasRelatedWork W2288638702 @default.
- W2015963212 hasRelatedWork W2335358208 @default.
- W2015963212 hasRelatedWork W2899084033 @default.
- W2015963212 hasRelatedWork W3160673289 @default.
- W2015963212 hasRelatedWork W3181373565 @default.
- W2015963212 hasVolume "58" @default.
- W2015963212 isParatext "false" @default.
- W2015963212 isRetracted "false" @default.
- W2015963212 magId "2015963212" @default.
- W2015963212 workType "article" @default.