Matches in SemOpenAlex for { <https://semopenalex.org/work/W2015963809> ?p ?o ?g. }
- W2015963809 endingPage "39" @default.
- W2015963809 startingPage "32" @default.
- W2015963809 abstract "Protein–meibum and terpenoids–meibum lipid interactions could be important in the etiology of meibomian gland dysfunction (MGD) and dry eye symptoms. In the current model studies, attenuated total reflectance (ATR) infrared (IR) spectroscopy was used to determine if the terpenoid β-carotene and the major proteins in tears and meibum affect the hydrocarbon chain conformation and carbonyl environment of wax, an abundant component of meibum. The main finding of these studies is that mucin binding to wax disordered slightly the conformation of the hydrocarbon chains of wax and caused the wax carbonyls to become hydrogen bonded or experience a more hydrophilic environment. Lysozyme and lactoglobulin, two proteins shown to bind to monolayers of meibum, did not have such an effect. Keratin and β-carotene did not affect the fluidity (viscosity) or environment of the carbonyl moieties of wax. Based on these results, tetraterpenoids are not likely to influence the structure of meibum in the meibomian glands. In addition, these findings suggest that it is unlikely that keratin blocks meibomian glands by causing the meibum to become more viscous. Among the tear fluid proteins studied, mucin is the most likely to influence the conformation and carbonyl environment of meibum at the tear film surface." @default.
- W2015963809 created "2016-06-24" @default.
- W2015963809 creator A5002638584 @default.
- W2015963809 creator A5015996761 @default.
- W2015963809 creator A5019185711 @default.
- W2015963809 creator A5021697239 @default.
- W2015963809 creator A5031315736 @default.
- W2015963809 creator A5052026761 @default.
- W2015963809 creator A5069167592 @default.
- W2015963809 creator A5077009362 @default.
- W2015963809 date "2012-07-01" @default.
- W2015963809 modified "2023-09-26" @default.
- W2015963809 title "Wax-tear and meibum protein, wax–β-carotene interactions in vitro using infrared spectroscopy" @default.
- W2015963809 cites W1481119266 @default.
- W2015963809 cites W1522561016 @default.
- W2015963809 cites W1966308680 @default.
- W2015963809 cites W1967329817 @default.
- W2015963809 cites W1969801240 @default.
- W2015963809 cites W1970505240 @default.
- W2015963809 cites W1975365939 @default.
- W2015963809 cites W1976571829 @default.
- W2015963809 cites W1978846384 @default.
- W2015963809 cites W1981603123 @default.
- W2015963809 cites W1984084380 @default.
- W2015963809 cites W1984546179 @default.
- W2015963809 cites W1986170687 @default.
- W2015963809 cites W1988108903 @default.
- W2015963809 cites W1988927261 @default.
- W2015963809 cites W1989428583 @default.
- W2015963809 cites W1990397669 @default.
- W2015963809 cites W1995462409 @default.
- W2015963809 cites W1996977585 @default.
- W2015963809 cites W1996988181 @default.
- W2015963809 cites W1999940631 @default.
- W2015963809 cites W2001866016 @default.
- W2015963809 cites W2002376466 @default.
- W2015963809 cites W2003318993 @default.
- W2015963809 cites W2003895191 @default.
- W2015963809 cites W2004535497 @default.
- W2015963809 cites W2008982616 @default.
- W2015963809 cites W2009306474 @default.
- W2015963809 cites W2010772007 @default.
- W2015963809 cites W2015453062 @default.
- W2015963809 cites W2020415786 @default.
- W2015963809 cites W2021866296 @default.
- W2015963809 cites W2022150566 @default.
- W2015963809 cites W2022693140 @default.
- W2015963809 cites W2025371460 @default.
- W2015963809 cites W2025625688 @default.
- W2015963809 cites W2025634355 @default.
- W2015963809 cites W2028045919 @default.
- W2015963809 cites W2028999865 @default.
- W2015963809 cites W2029226179 @default.
- W2015963809 cites W2031680154 @default.
- W2015963809 cites W2032032786 @default.
- W2015963809 cites W2035133926 @default.
- W2015963809 cites W2036711210 @default.
- W2015963809 cites W2052130892 @default.
- W2015963809 cites W2053824048 @default.
- W2015963809 cites W2054873632 @default.
- W2015963809 cites W2056036829 @default.
- W2015963809 cites W2056601035 @default.
- W2015963809 cites W2058117060 @default.
- W2015963809 cites W2060230214 @default.
- W2015963809 cites W2062975913 @default.
- W2015963809 cites W2073684335 @default.
- W2015963809 cites W2074642597 @default.
- W2015963809 cites W2074850477 @default.
- W2015963809 cites W2082998492 @default.
- W2015963809 cites W2085183163 @default.
- W2015963809 cites W2086186627 @default.
- W2015963809 cites W2086365250 @default.
- W2015963809 cites W2087116880 @default.
- W2015963809 cites W2087166815 @default.
- W2015963809 cites W2088327041 @default.
- W2015963809 cites W2089541004 @default.
- W2015963809 cites W2092099384 @default.
- W2015963809 cites W2105908398 @default.
- W2015963809 cites W2107061658 @default.
- W2015963809 cites W2112727307 @default.
- W2015963809 cites W2117934735 @default.
- W2015963809 cites W2128882835 @default.
- W2015963809 cites W2130394450 @default.
- W2015963809 cites W2131028390 @default.
- W2015963809 cites W2131061762 @default.
- W2015963809 cites W2144736486 @default.
- W2015963809 cites W2152409440 @default.
- W2015963809 cites W2164440923 @default.
- W2015963809 cites W2166015742 @default.
- W2015963809 cites W2168392681 @default.
- W2015963809 cites W2172258164 @default.
- W2015963809 cites W2181636817 @default.
- W2015963809 cites W2395113565 @default.
- W2015963809 cites W40178324 @default.
- W2015963809 cites W4236274645 @default.
- W2015963809 cites W4244003959 @default.
- W2015963809 cites W4362204629 @default.
- W2015963809 doi "https://doi.org/10.1016/j.exer.2012.04.003" @default.