Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016001035> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2016001035 endingPage "131" @default.
- W2016001035 startingPage "124" @default.
- W2016001035 abstract "In this study, quality grading of raisins using image processing and data mining based classifiers was investigated. Images from four different classes of raisins (green, green with tail, black, and black with tail) were acquired using a color CCD camera. After pre-processing and segmentation of images, 44 features including 36 color and eight shape features were extracted. Correlation-based feature selection was used to select best features for grading the raisins. Seven features were found superior. To classify raisins, four different data mining-based techniques including artificial neural networks (ANNs), support vector machines (SVMs), decision trees (DTs) and Bayesian networks (BNs) were investigated. Results of validation stage showed ANN with 7-6-4 topology had the highest classification accuracy, 96.33%. After ANN, SVM with polynomial kernel function (95.67%), DT with J48 algorithm (94.67%) and BN with simulated annealing learning (94.33%) had higher accuracy, respectively. Results of this research can be adapted for developing an efficient raisin sorting system." @default.
- W2016001035 created "2016-06-24" @default.
- W2016001035 creator A5043290838 @default.
- W2016001035 creator A5049069387 @default.
- W2016001035 creator A5069715966 @default.
- W2016001035 date "2012-06-01" @default.
- W2016001035 modified "2023-10-18" @default.
- W2016001035 title "Comparing data mining classifiers for grading raisins based on visual features" @default.
- W2016001035 cites W2013246630 @default.
- W2016001035 cites W2015779785 @default.
- W2016001035 cites W2048750869 @default.
- W2016001035 cites W2066036692 @default.
- W2016001035 cites W2067488172 @default.
- W2016001035 cites W2085204393 @default.
- W2016001035 cites W2085528030 @default.
- W2016001035 cites W2092649162 @default.
- W2016001035 cites W2092915639 @default.
- W2016001035 cites W2113650320 @default.
- W2016001035 cites W2133990480 @default.
- W2016001035 cites W2134036826 @default.
- W2016001035 cites W2473218629 @default.
- W2016001035 cites W59766769 @default.
- W2016001035 doi "https://doi.org/10.1016/j.compag.2012.03.004" @default.
- W2016001035 hasPublicationYear "2012" @default.
- W2016001035 type Work @default.
- W2016001035 sameAs 2016001035 @default.
- W2016001035 citedByCount "81" @default.
- W2016001035 countsByYear W20160010352013 @default.
- W2016001035 countsByYear W20160010352014 @default.
- W2016001035 countsByYear W20160010352015 @default.
- W2016001035 countsByYear W20160010352016 @default.
- W2016001035 countsByYear W20160010352017 @default.
- W2016001035 countsByYear W20160010352018 @default.
- W2016001035 countsByYear W20160010352019 @default.
- W2016001035 countsByYear W20160010352020 @default.
- W2016001035 countsByYear W20160010352021 @default.
- W2016001035 countsByYear W20160010352022 @default.
- W2016001035 countsByYear W20160010352023 @default.
- W2016001035 crossrefType "journal-article" @default.
- W2016001035 hasAuthorship W2016001035A5043290838 @default.
- W2016001035 hasAuthorship W2016001035A5049069387 @default.
- W2016001035 hasAuthorship W2016001035A5069715966 @default.
- W2016001035 hasConcept C119857082 @default.
- W2016001035 hasConcept C124101348 @default.
- W2016001035 hasConcept C127413603 @default.
- W2016001035 hasConcept C147176958 @default.
- W2016001035 hasConcept C153180895 @default.
- W2016001035 hasConcept C154945302 @default.
- W2016001035 hasConcept C2777286243 @default.
- W2016001035 hasConcept C41008148 @default.
- W2016001035 hasConceptScore W2016001035C119857082 @default.
- W2016001035 hasConceptScore W2016001035C124101348 @default.
- W2016001035 hasConceptScore W2016001035C127413603 @default.
- W2016001035 hasConceptScore W2016001035C147176958 @default.
- W2016001035 hasConceptScore W2016001035C153180895 @default.
- W2016001035 hasConceptScore W2016001035C154945302 @default.
- W2016001035 hasConceptScore W2016001035C2777286243 @default.
- W2016001035 hasConceptScore W2016001035C41008148 @default.
- W2016001035 hasLocation W20160010351 @default.
- W2016001035 hasOpenAccess W2016001035 @default.
- W2016001035 hasPrimaryLocation W20160010351 @default.
- W2016001035 hasRelatedWork W2961085424 @default.
- W2016001035 hasRelatedWork W3046775127 @default.
- W2016001035 hasRelatedWork W3107602296 @default.
- W2016001035 hasRelatedWork W3170094116 @default.
- W2016001035 hasRelatedWork W3209574120 @default.
- W2016001035 hasRelatedWork W4205958290 @default.
- W2016001035 hasRelatedWork W4286629047 @default.
- W2016001035 hasRelatedWork W4306321456 @default.
- W2016001035 hasRelatedWork W4306674287 @default.
- W2016001035 hasRelatedWork W4224009465 @default.
- W2016001035 hasVolume "84" @default.
- W2016001035 isParatext "false" @default.
- W2016001035 isRetracted "false" @default.
- W2016001035 magId "2016001035" @default.
- W2016001035 workType "article" @default.