Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016001943> ?p ?o ?g. }
- W2016001943 endingPage "1169" @default.
- W2016001943 startingPage "1158" @default.
- W2016001943 abstract "Rainfall disaggregation in time can be useful for the simulation of hydrologic systems and the prediction of floods and flash floods. Disaggregation of rainfall to timescales less than 1h can be especially useful for small urbanized watershed study, and for continuous hydrologic simulations and when Hortonian or saturation-excess runoff dominates. However, the majority of rain gauges in any region record rainfall in daily time steps or, very often, hourly records have extensive missing data. Also, the convective nature of the rainfall can result in significant differences in the measured rainfall at nearby gauges. This study evaluates several statistical approaches for rainfall disaggregation which may be applicable using data from West-Central Florida, specifically from 1h observations to 15min records, and proposes new methodologies that have the potential to outperform existing approaches. Four approaches are examined. The first approach is an existing direct scaling method that utilizes observed 15min rainfall at secondary rain gauges, to disaggregate observed 1h rainfall at more numerous primary rain gauges. The second approach is an extension of an existing method for continuous rainfall disaggregation through statistical distributional assumptions. The third approach relies on artificial neural networks for the disaggregation process without sorting and the fourth approach extends the neural network methods through statistical preprocessing via new sorting and desorting schemes. The applicability and performance of these methods were evaluated using information from a fairly dense rain gauge network in West-Central Florida. Of the four methods compared, the sorted neural networks and the direct scaling method predicted peak rainfall magnitudes significantly better than the remaining techniques. The study also suggests that desorting algorithms would also be useful to randomly replace the artificial hyetograph within a rainfall period." @default.
- W2016001943 created "2016-06-24" @default.
- W2016001943 creator A5010331298 @default.
- W2016001943 creator A5014356500 @default.
- W2016001943 creator A5042786812 @default.
- W2016001943 creator A5064658255 @default.
- W2016001943 creator A5071028537 @default.
- W2016001943 date "2008-12-01" @default.
- W2016001943 modified "2023-10-09" @default.
- W2016001943 title "Evaluation of Statistical Rainfall Disaggregation Methods Using Rain-Gauge Information for West-Central Florida" @default.
- W2016001943 cites W1586335931 @default.
- W2016001943 cites W1839873553 @default.
- W2016001943 cites W1912463333 @default.
- W2016001943 cites W1966011004 @default.
- W2016001943 cites W1968446526 @default.
- W2016001943 cites W1970833168 @default.
- W2016001943 cites W1970935069 @default.
- W2016001943 cites W1974195979 @default.
- W2016001943 cites W1979734969 @default.
- W2016001943 cites W1980332207 @default.
- W2016001943 cites W1980643200 @default.
- W2016001943 cites W1984197286 @default.
- W2016001943 cites W1989106064 @default.
- W2016001943 cites W1991249377 @default.
- W2016001943 cites W1994055968 @default.
- W2016001943 cites W1996150433 @default.
- W2016001943 cites W2005327128 @default.
- W2016001943 cites W2006610048 @default.
- W2016001943 cites W2008313676 @default.
- W2016001943 cites W2023786425 @default.
- W2016001943 cites W2024506222 @default.
- W2016001943 cites W2024642823 @default.
- W2016001943 cites W2036604204 @default.
- W2016001943 cites W2037305939 @default.
- W2016001943 cites W2037418290 @default.
- W2016001943 cites W2038694860 @default.
- W2016001943 cites W2047546607 @default.
- W2016001943 cites W2054921694 @default.
- W2016001943 cites W2067899736 @default.
- W2016001943 cites W2068112158 @default.
- W2016001943 cites W2073860337 @default.
- W2016001943 cites W2078445710 @default.
- W2016001943 cites W2085559713 @default.
- W2016001943 cites W2103042981 @default.
- W2016001943 cites W2115053231 @default.
- W2016001943 cites W2116397061 @default.
- W2016001943 cites W2123481634 @default.
- W2016001943 cites W2142001501 @default.
- W2016001943 cites W2143811356 @default.
- W2016001943 cites W2165169067 @default.
- W2016001943 cites W71639756 @default.
- W2016001943 doi "https://doi.org/10.1061/(asce)1084-0699(2008)13:12(1158)" @default.
- W2016001943 hasPublicationYear "2008" @default.
- W2016001943 type Work @default.
- W2016001943 sameAs 2016001943 @default.
- W2016001943 citedByCount "10" @default.
- W2016001943 countsByYear W20160019432012 @default.
- W2016001943 countsByYear W20160019432015 @default.
- W2016001943 countsByYear W20160019432016 @default.
- W2016001943 countsByYear W20160019432017 @default.
- W2016001943 countsByYear W20160019432018 @default.
- W2016001943 countsByYear W20160019432019 @default.
- W2016001943 countsByYear W20160019432022 @default.
- W2016001943 crossrefType "journal-article" @default.
- W2016001943 hasAuthorship W2016001943A5010331298 @default.
- W2016001943 hasAuthorship W2016001943A5014356500 @default.
- W2016001943 hasAuthorship W2016001943A5042786812 @default.
- W2016001943 hasAuthorship W2016001943A5064658255 @default.
- W2016001943 hasAuthorship W2016001943A5071028537 @default.
- W2016001943 hasConcept C107054158 @default.
- W2016001943 hasConcept C111696304 @default.
- W2016001943 hasConcept C119857082 @default.
- W2016001943 hasConcept C120961793 @default.
- W2016001943 hasConcept C126197015 @default.
- W2016001943 hasConcept C127313418 @default.
- W2016001943 hasConcept C150547873 @default.
- W2016001943 hasConcept C153294291 @default.
- W2016001943 hasConcept C187320778 @default.
- W2016001943 hasConcept C18903297 @default.
- W2016001943 hasConcept C199360897 @default.
- W2016001943 hasConcept C205649164 @default.
- W2016001943 hasConcept C39432304 @default.
- W2016001943 hasConcept C41008148 @default.
- W2016001943 hasConcept C49204034 @default.
- W2016001943 hasConcept C50477045 @default.
- W2016001943 hasConcept C50644808 @default.
- W2016001943 hasConcept C76886044 @default.
- W2016001943 hasConcept C86803240 @default.
- W2016001943 hasConceptScore W2016001943C107054158 @default.
- W2016001943 hasConceptScore W2016001943C111696304 @default.
- W2016001943 hasConceptScore W2016001943C119857082 @default.
- W2016001943 hasConceptScore W2016001943C120961793 @default.
- W2016001943 hasConceptScore W2016001943C126197015 @default.
- W2016001943 hasConceptScore W2016001943C127313418 @default.
- W2016001943 hasConceptScore W2016001943C150547873 @default.
- W2016001943 hasConceptScore W2016001943C153294291 @default.
- W2016001943 hasConceptScore W2016001943C187320778 @default.
- W2016001943 hasConceptScore W2016001943C18903297 @default.