Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016003265> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W2016003265 endingPage "77" @default.
- W2016003265 startingPage "77" @default.
- W2016003265 abstract "We prove existence and uniqueness results for the following Cauchy problem in the half plane $t geq 0:{u_t} + {(f(u))_x} + {u_{xxx}} = {g_1}(u){u_{xx}} + {g_2}(u){({u_x})^2} + p(u),u(x,0) = {u_0}(x)$, where $u = u(x,t)$ and the subscripts indicate partial derivatives. We require that f, ${g_1}$, ${g_2}$, and p be sufficiently smooth and satisfy $fâ(u) geq 0,smallint _0^uf(v);dv geq 0$, and other similar sign conditions on ${g_1}$, ${g_2}$, and p. Our hypotheses allow for exponential growth of f, ${g_1}$, ${g_2}$, and p so long as the sign conditions are satisfied and include the special cases $f(u) = {u^{2n + 1}},{g_1}(u) = {u^{2m}},{g_2}(u) = - {u^{2r + 1}}$, and $p(u) = - {u^{2s + 1}}$, for n, m, r, and s nonnegative integers. To obtain a global solution in time, we perturb the equation by $- epsilon ({u_{xxxx}} - {(f(u))_{xx}})$. The perturbed equation is solved locally (in time) and this solution is extended to a global solution by means of a priori estimates on the ${H^s}$ (of space) norms of the local solution. These estimates require the use of new nonlinear functionals. We then obtain the solution to the original equation as a limit of solutions to the perturbed equation as $epsilon$ tends to zero using the standard techniques. For the related periodic problem, for which we require $u(x + 2pi ,t) = u(x,t)$ for all $t geq 0$, we also obtain existence and uniqueness results. We prove existence for this problem via similar techniques to the nonperiodic case. We then consider differential difference schemes for the periodic initial value problem and show that we may obtain the solution as the limit of solutions to an appropriate scheme." @default.
- W2016003265 created "2016-06-24" @default.
- W2016003265 creator A5087081102 @default.
- W2016003265 date "1974-01-01" @default.
- W2016003265 modified "2023-09-25" @default.
- W2016003265 title "On existence and uniqueness for a new class of nonlinear partial differential equations using compactness methods and differential difference schemes" @default.
- W2016003265 cites W1970446082 @default.
- W2016003265 cites W1977892579 @default.
- W2016003265 cites W2012324026 @default.
- W2016003265 cites W2022025639 @default.
- W2016003265 cites W2023909923 @default.
- W2016003265 cites W2089996117 @default.
- W2016003265 cites W2160127505 @default.
- W2016003265 doi "https://doi.org/10.1090/s0002-9947-1974-0338585-5" @default.
- W2016003265 hasPublicationYear "1974" @default.
- W2016003265 type Work @default.
- W2016003265 sameAs 2016003265 @default.
- W2016003265 citedByCount "4" @default.
- W2016003265 crossrefType "journal-article" @default.
- W2016003265 hasAuthorship W2016003265A5087081102 @default.
- W2016003265 hasBestOaLocation W20160032651 @default.
- W2016003265 hasConcept C114614502 @default.
- W2016003265 hasConcept C121332964 @default.
- W2016003265 hasConcept C134306372 @default.
- W2016003265 hasConcept C138885662 @default.
- W2016003265 hasConcept C139676723 @default.
- W2016003265 hasConcept C151201525 @default.
- W2016003265 hasConcept C158622935 @default.
- W2016003265 hasConcept C18648836 @default.
- W2016003265 hasConcept C26955809 @default.
- W2016003265 hasConcept C2777021972 @default.
- W2016003265 hasConcept C2778572836 @default.
- W2016003265 hasConcept C33923547 @default.
- W2016003265 hasConcept C37914503 @default.
- W2016003265 hasConcept C41895202 @default.
- W2016003265 hasConcept C62520636 @default.
- W2016003265 hasConcept C78045399 @default.
- W2016003265 hasConceptScore W2016003265C114614502 @default.
- W2016003265 hasConceptScore W2016003265C121332964 @default.
- W2016003265 hasConceptScore W2016003265C134306372 @default.
- W2016003265 hasConceptScore W2016003265C138885662 @default.
- W2016003265 hasConceptScore W2016003265C139676723 @default.
- W2016003265 hasConceptScore W2016003265C151201525 @default.
- W2016003265 hasConceptScore W2016003265C158622935 @default.
- W2016003265 hasConceptScore W2016003265C18648836 @default.
- W2016003265 hasConceptScore W2016003265C26955809 @default.
- W2016003265 hasConceptScore W2016003265C2777021972 @default.
- W2016003265 hasConceptScore W2016003265C2778572836 @default.
- W2016003265 hasConceptScore W2016003265C33923547 @default.
- W2016003265 hasConceptScore W2016003265C37914503 @default.
- W2016003265 hasConceptScore W2016003265C41895202 @default.
- W2016003265 hasConceptScore W2016003265C62520636 @default.
- W2016003265 hasConceptScore W2016003265C78045399 @default.
- W2016003265 hasLocation W20160032651 @default.
- W2016003265 hasOpenAccess W2016003265 @default.
- W2016003265 hasPrimaryLocation W20160032651 @default.
- W2016003265 hasRelatedWork W1999310005 @default.
- W2016003265 hasRelatedWork W2026015844 @default.
- W2016003265 hasRelatedWork W2352467436 @default.
- W2016003265 hasRelatedWork W2359335429 @default.
- W2016003265 hasRelatedWork W2367362213 @default.
- W2016003265 hasRelatedWork W2382769274 @default.
- W2016003265 hasRelatedWork W3098706591 @default.
- W2016003265 hasRelatedWork W3141733837 @default.
- W2016003265 hasRelatedWork W3188724675 @default.
- W2016003265 hasRelatedWork W2480921170 @default.
- W2016003265 hasVolume "188" @default.
- W2016003265 isParatext "false" @default.
- W2016003265 isRetracted "false" @default.
- W2016003265 magId "2016003265" @default.
- W2016003265 workType "article" @default.