Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016009618> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2016009618 endingPage "1406" @default.
- W2016009618 startingPage "1391" @default.
- W2016009618 abstract "Moment has been one of the most popular techniques for image processing, pattern classification and computer vision. In this paper, we propose two VLSI architectures for computing the regular (geometric) moments and central moments. First, a one-dimensional systolic array is presented. In this architecture, a dynamic time delay controller is used for obtaining the correct data flow. It takes max(p,q)×n+n+2 time units to compute the moments of order (p+q). If there are k images, the computational time will be k[max(p,q)×n+n+2]. Second, a two-dimensional architecture is presented. It takes n+n+n−1+2+1=3n+2 time units to compute the moments of order (p+q). If there are k images, the computational time will be (k−1)×2n+3n+2=2nk+n+2. Thee proposed approaches are much faster than the existing ones. If a uniprocessor is used, the time complexity is (p+q)n2, and if there are k images, the computational time will be k(p+q)n2. Finally, a VLSI architecture is presented for calculating the central moments. In this architecture, 3×n processing elements are used for calculating m00,m01,andm10. The results are sent to a two-dimensional structure for computing central moments. It takes 2n+3+max(p,q)+2+n+n−1+1=4n+max(p,q)+5 time units to finish the calculation of the central moments. The important issue of VLSI design, algorithm partition, is also addressed. The basic idea of this paper can be extended to compute other kinds of moments easily. We have applied the moments for extracting the features of breast cancer biopsy images and classified them using neural networks. The 100% classification rate has been achieved." @default.
- W2016009618 created "2016-06-24" @default.
- W2016009618 creator A5044879865 @default.
- W2016009618 creator A5049397675 @default.
- W2016009618 creator A5071931462 @default.
- W2016009618 date "1998-09-01" @default.
- W2016009618 modified "2023-10-18" @default.
- W2016009618 title "VLSI FOR MOMENT COMPUTATION AND ITS APPLICATION TO BREAST CANCER DETECTION" @default.
- W2016009618 cites W1973406480 @default.
- W2016009618 cites W1981039223 @default.
- W2016009618 cites W1981619487 @default.
- W2016009618 cites W1983272054 @default.
- W2016009618 cites W1994513823 @default.
- W2016009618 cites W2002448074 @default.
- W2016009618 cites W2015975137 @default.
- W2016009618 cites W2017369466 @default.
- W2016009618 cites W2019724552 @default.
- W2016009618 cites W2035062046 @default.
- W2016009618 cites W2045010718 @default.
- W2016009618 cites W2059143206 @default.
- W2016009618 cites W2059803199 @default.
- W2016009618 cites W2086936614 @default.
- W2016009618 cites W2088162971 @default.
- W2016009618 cites W2097493185 @default.
- W2016009618 cites W2106820970 @default.
- W2016009618 cites W2109868689 @default.
- W2016009618 cites W2118376687 @default.
- W2016009618 cites W2133245801 @default.
- W2016009618 cites W2146880335 @default.
- W2016009618 cites W2159498975 @default.
- W2016009618 cites W2160353516 @default.
- W2016009618 cites W2164245403 @default.
- W2016009618 cites W2295212288 @default.
- W2016009618 doi "https://doi.org/10.1016/s0031-3203(97)00154-4" @default.
- W2016009618 hasPublicationYear "1998" @default.
- W2016009618 type Work @default.
- W2016009618 sameAs 2016009618 @default.
- W2016009618 citedByCount "19" @default.
- W2016009618 countsByYear W20160096182012 @default.
- W2016009618 countsByYear W20160096182014 @default.
- W2016009618 crossrefType "journal-article" @default.
- W2016009618 hasAuthorship W2016009618A5044879865 @default.
- W2016009618 hasAuthorship W2016009618A5049397675 @default.
- W2016009618 hasAuthorship W2016009618A5071931462 @default.
- W2016009618 hasConcept C11413529 @default.
- W2016009618 hasConcept C115961682 @default.
- W2016009618 hasConcept C121332964 @default.
- W2016009618 hasConcept C14580979 @default.
- W2016009618 hasConcept C149635348 @default.
- W2016009618 hasConcept C154945302 @default.
- W2016009618 hasConcept C173608175 @default.
- W2016009618 hasConcept C179254644 @default.
- W2016009618 hasConcept C179799912 @default.
- W2016009618 hasConcept C33923547 @default.
- W2016009618 hasConcept C41008148 @default.
- W2016009618 hasConcept C45374587 @default.
- W2016009618 hasConcept C4822641 @default.
- W2016009618 hasConcept C74650414 @default.
- W2016009618 hasConcept C79189994 @default.
- W2016009618 hasConcept C9417928 @default.
- W2016009618 hasConceptScore W2016009618C11413529 @default.
- W2016009618 hasConceptScore W2016009618C115961682 @default.
- W2016009618 hasConceptScore W2016009618C121332964 @default.
- W2016009618 hasConceptScore W2016009618C14580979 @default.
- W2016009618 hasConceptScore W2016009618C149635348 @default.
- W2016009618 hasConceptScore W2016009618C154945302 @default.
- W2016009618 hasConceptScore W2016009618C173608175 @default.
- W2016009618 hasConceptScore W2016009618C179254644 @default.
- W2016009618 hasConceptScore W2016009618C179799912 @default.
- W2016009618 hasConceptScore W2016009618C33923547 @default.
- W2016009618 hasConceptScore W2016009618C41008148 @default.
- W2016009618 hasConceptScore W2016009618C45374587 @default.
- W2016009618 hasConceptScore W2016009618C4822641 @default.
- W2016009618 hasConceptScore W2016009618C74650414 @default.
- W2016009618 hasConceptScore W2016009618C79189994 @default.
- W2016009618 hasConceptScore W2016009618C9417928 @default.
- W2016009618 hasIssue "9" @default.
- W2016009618 hasLocation W20160096181 @default.
- W2016009618 hasOpenAccess W2016009618 @default.
- W2016009618 hasPrimaryLocation W20160096181 @default.
- W2016009618 hasRelatedWork W1572523360 @default.
- W2016009618 hasRelatedWork W1753032823 @default.
- W2016009618 hasRelatedWork W1877508920 @default.
- W2016009618 hasRelatedWork W2059819865 @default.
- W2016009618 hasRelatedWork W2105280840 @default.
- W2016009618 hasRelatedWork W2131810978 @default.
- W2016009618 hasRelatedWork W2322750154 @default.
- W2016009618 hasRelatedWork W2326195745 @default.
- W2016009618 hasRelatedWork W2633447678 @default.
- W2016009618 hasRelatedWork W3005833196 @default.
- W2016009618 hasVolume "31" @default.
- W2016009618 isParatext "false" @default.
- W2016009618 isRetracted "false" @default.
- W2016009618 magId "2016009618" @default.
- W2016009618 workType "article" @default.